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Chapter 1

Introduction

The whole story starts in the years 1988/�89 by Floer�s proof of the Arnold con-
jecture ([A]) for monotone symplectic manifolds ([FloeI], [FloeII]). By de�ning a
boundary operator that counts orbits (Floer trajectories) connecting nondegenerate
1-periodic solutions of

.
x (t) = XHt(x(t)) (1.1)

for XHt being a family of time dependent Hamiltonian vector �elds, he developed
a new type of homology theory (Floer homology). By means of it he could proof
that the number these 1-periodic solutions (in one-to-one correspondence with �xed
points of time-1-symplectomorphisms on M) is bounded from below by the sum of
the Betti numbers ofM . Remark that this is a much stronger result than just to es-
timate it from below by the Euler characteristic (i.e. the alternating sum of the Betti
numbers), achieved by using the Lefschetz �xed point theorem. This astonishing
result is much stronger than topological examinations could provide and therefore
it enforced the viewpoint that symplectic topology (large-scale perception due to
the nonsqueezing theorem) is more precisely redenoted as symplectic geometry.
H. Hofer, D. Salamon, E. Zehnder any many others further worked out details of
the proofs and therefore helped to develop the theory in order to achieve more gen-
erality for the requirements posed on M . The stated conjecture could be proven
step by step for the semipositive case (e.g. [HoSa]) and �nally for general compact
symplectic manifolds (e.g. [FO]). To keep this text in a seizable manner we can
neither discuss this process nor describe the pathbreaking results in the following.
The interested reader is referred to the stated papers above or e.g. the lecture notes
of D. Salamon [Sa] which provide a nice description of the conceptual buildup of
this theory.

A. Floer proposed ([FloeI]) to apply his newly developed homology theory to
face intersection issues of Lagrangian submanifolds

Ln0 , L
n
1 ∈ (M2n, ω) (that is 2 · dim Li = dim M, ω|Li ≡ 0) (1.2)

and tried to derive a similar lower bound estimate for the number of intersection
points

#{p ∈ L0 ∩ L1} . (1.3)
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4 CHAPTER 1. INTRODUCTION

Such (non-)displaceabiltity questions are a major challenge in symplectic geometry.
Compare for example the, conceptual quite di�erent, ansatz of M. Entov and L.
Polterovich in [EP]. The authors derived the concept of quasi-states (functionals
on C0(M,R)) in order to achieve more insight here.
The present text though focuses on and tries to extent the ideas originated by A.
Floer. He de�ned a chain complex (over Z2) generated by intersection points

p ∈ L0 ∩ L1 . (1.4)

For the boundary operation

∂p =
∑
〈∂p, q〉q (1.5)

one counts the number 〈∂p, q〉 (mod Z2) of pseudo-holomorphic curves (du
ds

+J du
dt

= 0)

u : R× [0, 1]→M (1.6)

attaching Li, precisely speaking those that satisfy the boundary conditions (see
�gure 6.1)

lim
t→−∞

u(t, s) = p , lim
t→∞

u(t, s) = q

u(t, s = 0) ∈ L0 , u(t, s = 1) ∈ L1.
(1.7)

Figure 1.1: Examination of Lagrangian submanifolds by using pseudo-holomorphic
curves

In [FloeI] A. Floer gave a proof that the following results

(i) ∂ ◦ ∂ = 0 ⇒ HF (L0, L1) := ker ∂/im ∂ is de�ned

(ii) L0 t L1 ⇒ #{p ∈ L0 ∩ L1} ≥
∑
k

HF k(L0, L1)

(iii) HF (L0, L1) ∼= HF (φ0(L0), φ1(L1)) for φi being a Hamiltonian di�eomorphism

(iv) HF (L,L) ∼= H(L; Z2)

can be achieved in the case

L0 = L , L1 = φ(L) (1.8)

for φ being a Hamiltonian di�eomorphism on M and L being Lagrangian subman-
ifold in M satisfying

π2(M,L) = 0 . (1.9)
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Combining the results (i)-(iv) provides an Arnold conjectural type result for La-
grangian intersections:

#{p ∈ L ∩ φ(L)} ≥
∑
k

bk︸︷︷︸
rank Hk(L;Z2)

(1.10)

In works of several others, one tried to achieve similar statements like (i)-(iv) for
more general cases, not covered by 1.8 and 1.9. The most remarkable of these
approaches was achieved by Y.-G. Oh in [Oh]. There he could prove the statements
(i)-(iii) for monotone Lagrangian submanifolds, that is

c1(α) = λ

∫
α

ω for λ > 0 and α ∈ im(π2(M,L)→ H2(M,L)), (1.11)

with minimal Maslov number ≥ 3.

The sense, of how to get a more elaborate view on those described Lagrangian
intersection issues, soon developed into evolving a more general description. The
goal was to organize the present facts in a well understood algebraic language which
can be handled properly and �nally outputs a cohomology theory.
The major breakthrough in this direction was accomplished by K. Fukaya et al. in
[FOOO1]. More precisely, by adopting the notion of A∞-algebras, considered for
the �rst time by J. Stashe� in [Sta], and extending it the �ltered ones, they derive
in Theorem A of [FOOO1]:

Theorem 1.1

The setup of a relatively spin (see (5.83)) Lagrangian submanifold L ⊂M can
be formalized to a description in terms of a �ltered A∞-algebra.

By distinguishing between one 'output' and k 'input' points for pseudo-holomorphic
discs with k + 1 marked points, they de�ned homomorphisms that map k given
chains of L onto one, given by a perturbed moduli space Ms. By dualizing the
whole picture one gets

H∗(L; Λ)⊗ ...⊗H∗(L; Λ)︸ ︷︷ ︸
k

mk−−→ H∗(L; Λ) (1.12)

for appropriate ground rings Λ (see section 2.1 for a discussion of these so called
Novikov rings). By now examining the boundary components ofM (see chapter 5
for details), they could proof that these mentioned homomorphisms {mk}k≥0 ful�ll
they necessary A∞-relation (3.63).
Generally speaking their approach is that powerful since they achieved to work with
a permanent interplay between geometry and algebra. By organizing the Ln ⊂M2n

setup, via making use of the moduli space of pseudo-holomorphic curves, in an A∞
manner, one can face present geometric complicacies by means of well understood
algebraic concepts. After doing the necessary job on the algebra side we can go back
to geometry (as we discuss in section 3.2.2 mostly by using the potential function
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PO), equipped with a better insight into the behavior of Lagrangian submanifolds.
Independently of the integration of A∞-algebras into Floer theory, also physicists
(mainly inspired by [Wi]) realized that these concepts can be used for the explo-
ration of open string theory. In this thesis we are not discussing this relation to
physics but refer to future research projects for details.

So what are A∞-algebras and especially why do they incorporate such a general-
ity? The rigorous description is postponed to chapter 3, here in this "down-to-earth
de�nition" we just aim to provide a �rst feeling for how they can be used.

For a Z-graded vector space A =
⊕
m∈Z

Am over a �eld R and degree +1 homo-

morphisms
m = {mk : A⊗ ...⊗ A︸ ︷︷ ︸

k

→ A}k≥1 or k≥0 (1.13)

we say that (A,m) carries the structure of a (�ltered) A∞-algebra if for all k the
A∞-relation∑

k1+k2=k+1

∑
l

(−1)deg x1+...+deg xl−1+l−1

mk1(x1, ..., xl−1,mk2(xl, ..., xl+k2−1), xl+k2 , ..., xk) = 0

(1.14)

is satis�ed. The fact whether we consider k ≥ 1 or k ≥ 0 is quite crucial in the
ongoing of this text since it re�ects the cruciality if we can easily (k ≥ 1) �nd a
coboundary operator or if we have to work hard (k ≥ 0) to do so.
To provide an intuition for the power of the A∞-relation we �rst assume k ≥ 1 and
examine equation (1.14) for the cases k = 2, 3.

For k = 2 (1.14) writes as

m1(m2(x, y)) +m2(m1(x), y) + (−1)deg x+1m2(x,m1(y)) = 0 (1.15)

and thus by de�ning

m1(x) =: dx

m2(x, y) =: (−1)deg x−1x · y
(1.16)

this equation can be rewritten as

0 =d(m2(x, y)) + (−1)deg m1(x)−1m1(x) · y + (−1)deg x+1+deg x−1x ·m1(y)

=(−1)deg x−1d(x · y) + (−1)deg x+1−1dx · y + (−1)2deg xx · dy .
(1.17)

By multiplying with (−1)deg x we conclude

d(x · y) = dx · y + (−1)deg xx · dy (1.18)

that is d, arising from m1, is a di�erential that respects the graded Leibniz rule with
respect to the multiplication · .
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For k = 3 (1.14) further yields:

0 = m2(m2(x, y), z) + (−1)deg x+1m2(x,m2(y, z)) + "terms involving m3" =

= (−1)deg m2(x,y)−1m2(x, y) · z + (−1)2 deg xx ·m2(y, z) + · · · =
= (−1)2 deg x+deg y+1−1−1(x · y) · z + (−1)2 deg x+deg y−1x · (y · z) + · · ·

(1.19)

and thus

(x · y) · z + x · (y · z) = (−1)deg y−1 "terms involving m3" . (1.20)

This last equation is read that the m3 term measures the deviation of the multipli-
cation · , arising from m2, from being associative.
In summary we have that A∞-algebras can be seen as generalizations of di�erential
graded algebras (D.G.A.). Precisely speaking we have the following inclusions:

{D.G.A.} ⊂ {A∞-algebra}

(A =
⊕
m∈Z

Am, ·, d) ↪→ (A, {m1(x) := dx,m2(x, y) := (−1)deg x−1x · y,

m0 = mi≥3 := 0})

{cochain complex} ⊂ {A∞-algebra}

(A =
⊕
m∈Z

Am, d) ↪→ (A, {m1(x) := dx,m0 = mi≥2 := 0})

(1.21)

Not only considerations about generalizing the concept of di�erential graded al-
gebras, but further information concerning Lagrangian Floer theoretic issues can be
described A∞-algebras.

As already announced above, we remark that the devil is in the detail, namely
in the fact if one considers the k ≥ 1 (un�ltered, see section 3.1.1) or the k ≥ 0
(�ltered, see section 3.1.1) case. The additional considerations about extending
the theory to "�ltered" A∞-algebras become necessary since for the build up of
Lagrangian Floer theory we have to consider the latter case. This fact re�ects the
appearance of holomorphic disc bubbles with no input and one output point and
leads to the anomaly occurrence

δ ◦ δ 6= 0 . (1.22)

Speaking in A∞ terms (with k ≥ 0) this phenomenon is described by considering
(1.14) for k = 1:

m1(m1(x)) +m2(m0(1), x) + (−1)deg x+1m2(x,m0(1)) = 0 (1.23)

One wants to declare the m1 map as a coboundary operator, an assignment that is
not possible yet due to (1.23) that in general yields

m1 ◦m1 6= 0 . (1.24)
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In order to get rid of these anomalies we present two possible approaches of how to
bypass them.
The "strict" solution (see section 3.2.1) would be to deform the maps mk → mb

k

somehow in a way to achieve that mb
0 ≡ 0 and thus making the last two summands

of (1.23) vanish.
Alternatively since the stated approach is in practice often not performable, the
"weak" (see section 3.2.2) way out would be to achieve that the last last two sum-
mands of (1.23) do not vanish, but cancel each other and thus the desired result is
achieved.
For both approaches one makes use of so called (weak) Maurer-Cartan solutions b.
These are closely related to de�ning and examining a potential function PO, which
is de�ned on the set formed by these elements. This arising function PO is then
used as a working tool for actually computing Lagrangian Floer Cohomology.

For not just mentioning buzzwords, we give a perspective on what is done in the
present text.

Since notions appear throughout the whole text, chapter 1 recaps and sum-
marizes basic facts about Novikov rings, later used as ground rings of our �ltered
A∞-algebra, and the Maslov index for symplectic bundle pairs, which is used to
better describe the appearing pseudo-holomorphic curves. These in turn form a
moduli spaceM, whose nature is also recapped in this convention chapter.

To lay the precise algebraic ground, chapter 3 describes the theory of (�ltered)
A∞-algebras. For not drifting to deep into pure algebra, our focus hereby lies on
concepts actually appearing in the algebraic description of geometry. We further
discuss how the features of A∞-algebras (mainly provided by the richness of infor-
mation encoded in the A∞-relation) can be used to de�ne a coboundary operator
and thus a cohomology theory (in this text denoted as Lagrangian Floer Cohomol-
ogy). In this context it is quite natural to introduce the afore mentioned potential
function PO that will later on serve as a helpful tool when preforming computations.

Chapter 4, about the theory of Kuranishi structures, is quite technical and
presents concepts that become important when formalizing geometric setups in the
notion of A∞-algebras. The process of transporting forms from a source space (later
k copies of the Lagrangian submanifold L) via a space equipped with a Kuranishi
structure (the perturbed moduli spaceM of pseudo-holomorphic curves attaching
L) to a target space (the Lagrangian submanifold L) can be seen as the geometric
appearance of the A∞ homomorphisms {mk}k≥0.

After presenting notions in a general fashion so far, in chapter 5 we focus on
toric symplectic manifolds. Essentially we �x notions and shortly recall how corre-
sponding moment polytopes of certain selected examples (appearing in later consid-
erations) arise. By incorporating the ideas of chapter 4, we show that the setup of
Lagrangian torus �bers (over interior points of the moment polytope) in toric mani-
folds can be described in an A∞-algebra fashion. One main advantage, of specifying
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to toric setup, is that certain A∞ homomorphisms can actually be computed in
terms of coordinate data of the underlying moment polytope of M . This works at
least for those homomorphisms that appear in the de�nition of the potential func-
tion. It can be seen as major goal of this chapter to explicitly derive a coordinate
description (provided by ∆ ⊂ Rn) of PO for Fano toric manifolds M .

We actually aim to face intersection issues of two Lagrangian submanifolds
L0, L1. Such a setup a algebraically well described by light/left A∞-bimodules
over the A∞-algebras associated to L1 respectively L0. Chapter 7 aims to provide
a feeling for these concepts. On purpose we remain more sketchy here compared
to how we presented the theory of A∞-algebras in chapter 3. The reason for this
kind of approaching is twofold. First it is mostly an algebraic generalization of
ideas (by using standard Floer theoretic concepts) arising for A∞-algebras and the
focus of this text lies more in the treatment of geometry. Secondly, and even more
important, Lagrangian Floer Cohomology, arising out of A∞-bimodules for two La-
grangian submanifolds L0, L1, coincides with the one, de�ned for one Lagrangian
submanifold L arising out of its corresponding A∞-algebra, in the case L0 = L1 = L.
With this background in mind we can ask for a lower bound on the number of inter-
section points of L with ψ(L), that is the image of L when applying a Hamiltonian
di�eomorphism ψ. A positive reply (depending on the Hofer norm ‖ψ‖) into that
direction is provided by a Theorem of K. Fukaya et al. (Theorem J in [FOOO1])
which only requires the knowledge of the Lagrangian Floer Cohomology of L. In
the case of M being Fano toric we present a method how this in turn can be com-
puted since, as we show there, the coboundary operator is computable in terms of
derivatives of PO (which we also know due to the results of chapter 5). We are
closing with illustrating the introduced concepts by means of some examples.

Physicists call the appearing anomaly, m1 not squaring up to 0, a BRST (BRST
cohomology as the Hilbert space of physical states) symmetry breaking by soltion
(disc bubbles) e�ects. Mainly the present thesis tries to explore the mathematical
perspective, we though want to depict how notions naturally arise in topological
string �eld theory. The usefulness of describing the theory in an A∞ fashion shows
up since we are again able to de�ne a potential function, the superpotential Ψ,
whose critical points form the moduli space of string con�gurationsM. In chapter
7 we explicitly show how cubic open string �eld theory can be described in terms
of A∞−algebras. The thereof arising minimal model (K, {mn}) is de�ned for the
space of physical states K and the homomorphisms

mn : K⊗n → K (1.25)

describe string products in tree-level Feynman diagrams. The motivation of this
chapter can be seen as to (re-)state formerly appeared concepts, now regarding
things from the perspective of a physicist.

Before �nally starting with the main section of the present text we remark that
the presented concepts mainly base upon the remarkable work of K. Fukaya, Y.-
G. Oh, H. Ohta, K. Ono. Out of their numerous works, dealing with Lagrangian
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Floer theory and its in�uence on many mathematical branches like homological
mirror symmetry etc., we are especially focusing on and making use of the ideas
presented in [FOOO1], [FOOO2], [FOOO3], [FOOO4] and [FOOO5]. The intention
for writing this thesis can be seen as providing a �rst feeling for the authors� work
by exemplifying some of their ideas in a detailed manner.



Chapter 2

Conventions and Working tools

Before diving into the conceptual buildup of an algebraic approach to Lagrangian
Floer Cohomology, we �rst have to clarify some basic concepts and �x notations
that will come up throughout the text.
Thereby we orient ourselves on the work of Fukaya et al. presented in [FOOO1].
For concepts about how to handle the underlying symplectic geometry we advert
to the standard textbook [McSa]. Results concerning the theory of stable maps
and compacti�cation issues we lean ourselves mainly on [McSaII] that provides a
detailed description in general and again [FOOO1] in order to stay consistent with
the authors� ideas and notations.

2.1 Novikov rings

As remarked in the introduction chapter 1 if one wants to apply the A∞ machinery,
for getting a more profound way of handling geometry, we can not easily get rid of
the appearing m0 terms. In order to control the arising in�nite sums we have to
�nd ways of how to complete the arising modules. This is done by using appropri-
ate �ltrations. The therefore necessary extension of standard A∞-algebra (over R)
structures to �ltered ones is done by using Novikov rings Λ0,nov(R).
Most readers may somehow be familiar with these rings since they are already used
in standard Floer theory. For M being Calabi-Yau they arise as the necessary
ground ring of singular homology for being isomorphic to Floer homology.
Here we shortly recap how they are de�ned and explain how they can naturally
equipped with a �ltration F that naturally extends to a �ltration on free graded
modules over Λ0,nov(R).

For a commutative ring R with unit 1 (mostly the integers Z or the �eld Q) and
formal generators T (deg T = 0) and e (deg e = 2) the universal Novikov ring is
de�ned as

Λ0,nov(R) := {
∞∑
i=0

aiT
λieni |ai ∈ R, ni ∈ Z, λi ∈ R≥0, λi ≤ λi+1, lim

i→∞
λi =∞} . (2.1)

For R being a �eld Λ0,nov(R) is an integral domain and we denote its �eld of fraction

11
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(that is the smallest �eld containing Λ0,nov(R))

Frac(Λ0,nov(R)) = {a
b
|a, b ∈ Λ0,nov(R); b 6= 0} =

= {
∞∑
i=0

aiT
λieni |ai ∈ R, ni ∈ Z, λi ∈ R, λi ≤ λi+1, lim

i→∞
λi =∞} =

=: Λnov(R)

(2.2)

as the universal Novikov �eld . In some cases one is forced to be a bit more general
here and is required to take R just being a commutative ring (with unit 1). One
needs to apply the localization procedure that is a generalization of the construction
of the �eld of fraction. Remark that in these cases Λnov(R) is not a �eld that is not
all elements have inverses then.
The ideal

Λ+
0,nov(R) ≡ Λ+,nov(R) (2.3)

of Λ0,nov(R) consisting of elements with λi strictly positve and the fact

Λ0,nov(R)/Λ+
0,nov(R) ∼= R[e, e−1] (2.4)

will play an important role when we later perform so called R-reductions. As de-
scribed in chapter 3, the stated construction allows to reduce �ltered A∞-algebras
(over Λ0,nov(R)) to 'classic' (that is un�ltered) ones over R. Since the parameter λi
is later used to encode the energy (symplectic volume)∫

Σ

u∗ω (2.5)

of the pseudo-holomorphic curves u, (2.4) and so R-reduction symplectically speak-
ing means that we mod out curves of positive energy.
Two additional conventions shall be �xed from now on:

• In some cases (especially the toric ones later on) we 'forget' the generator e
indicated by neglecting the subscript "nov", that is

Λ
(+)
(0) (R) := {

∞∑
i=0

aiT
λi | · ·· } . (2.6)

We further highlight that for R being a �eld we get that

Λ0(R) ≡ ΛR
0 (2.7)

is a principal ideal domain. This holds since all ideals of ΛR
0 are of the form

(T k) (for k ≥ 0) and thus are principal. We pro�t of this when later making use
of the universal coe�cient theorem. For the cohomology of the n-dimensional
torus,

Hk(T n; Z) ∼=

{
Z( n

n−k) , for 0 ≤ k ≤ n
0 , else

, (2.8)
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with coe�cients in the principal ideal domain ΛR
0 we then get

H∗(T n; ΛR
0 ) ∼=

n⊕
k=0

(ΛR
0 )(

n
n−k) ∼= (ΛR

0 )2n . (2.9)

• The speci�cation, with which ring R we are working with is, mostly neglected
in the case R = C, that is we write

Λ······(R = C) ≡ Λ······ . (2.10)

On the above described rings the map

νT : Λ······(R)→ R
∞∑
i=0

aiT
λieni 7→ inf {λi | ai 6= 0}

(2.11)

is well-de�ned since we assume without loss of generality (λi, ni) 6= (λj, nj) for
(i 6= j). It can be seen as a non-Archimedean valuation, that is it ful�lls

(i) νT (a) =∞⇔ a = 0

(ii) νT (ab) = νT (a) + νT (b)

(iii) min{νT (a), νT (b)} ≤ νT (a+ b) ≤ max{νT (a), νT (b)} .

Using the preimages of νT we get a �ltration FT of subrings for Λ0,nov(R) meaning

Λ0,nov(R) = F 0Λ0,nov(R) ⊃ F 1Λ0,nov(R) ⊃ F 2Λ0,nov(R) ⊃ · · · (2.12)

de�ned as

F λΛ0,nov(R) := ν−1
T ([λ,∞)) = T λ · Λ0,nov(R) for λ ≥ 0 . (2.13)

Later in chapter 3 we use these ideas to de�ne a �ltration F on

C ⊗R Λ0,nov(R) (2.14)

for C being a free graded R module. This is done by similarly using preimages of
the valuation

ν : C ⊗R Λ0,nov(R)→ R∑
i

xi︸︷︷︸
∈ Λ0,nov(R)

−→ei 7→ inf {νT (xi)} . (2.15)

The completion with respect to this �ltration (in section 3.1.2 we shortly recap how
this is performed) is then denoted by

C ⊗̂R Λ0,nov(R) . (2.16)
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2.2 Maslov index

for symplectic bundle pairs

We aim to recap some facts (see e.g. [McSa] for details) about Lagrangian vector
spaces respectively subbundles.
Recall that for a Lagrangian subspace Ln in the standard symplectic vector space

(R2n, ω0 =
n∑
i=1

dxi ∧ dyi) one always �nds a unique (up to O(n) action) unitary

Lagrangian frame Z =

(
X
Y

)
: Rn → R2n such that im(Z) = L. Since

X tY − Y tX = 0

XX t + Y Y t = 1
(2.17)

we have

ψ :=

(
X −Y
Y X

)
∈ Sp(2n) ∩O(2n) ∼= U(n) (2.18)

and therefore U := X + iY ∈ U(n). With the fact

L = ψ · Lhor. (2.19)

for Lhor. := {(x, y) ∈ R2n | y = 0} we deduce that the we have an isomorphism

{L | L Lagrangian subspace in (R2n, ω0)} =: L(n) ∼= U(n)/O(n) (2.20)

The de�ned Lagrangian Grassmannian L(n) is a manifold of dimension

dim U(n)− dim O(n) = n2 − n2 − n
2

=
n(n+ 1)

2
(2.21)

that is clearly invariant under actions of Sp(2n) (Sp(2n).L(n) = L(n)).
The standard Maslov index assigns to each loop

γ : R/Z→ L(n) (2.22)

an integer in the following way:

For

(
X(t)
Y (t)

)
being an unitary Lagrangian frame for the Lagrangian subspace γ(t)

at �xed time t, the map

ρ̃ ◦ γ : S1 → S1

t 7→ det (X(t) + iY (t)︸ ︷︷ ︸
∈U(n)

)2 (2.23)

gets lifted to

α : S1 → R (2.24)
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de�ned by
det (X(t) + iY (t))2 = e2πiα(t) . (2.25)

The Maslov index is now de�ned via

µ(γ) := α(1)− α(0) ∈ Z (2.26)

that is the mapping degree of ρ̃ ◦ γ.
The power factor 2 in (2.23) and thus in (2.25) comes into play since Lagrangians
with reversed orientation are considered to be equal. This guarantees well-de�nedness
of ρ̃ ◦ γ despite the O(n) freedom that we have for X(t), Y (t).
Amongst other nice properties, the Maslov index is identical for loops in L if and
only if they are homotopic to each other. Another important property, especially
with regard to the well-de�nedness of the Maslov index for symplectic bundle pairs,
is

µ(Ψγ) = µ(γ) + 2µ(Ψ) (2.27)

for Ψ : R/Z → Sp(2n) being a loop in the group of symplectic matrices. As
remarked above we have Ψ(t) · γ(t) ∈ L(n). Here µ(Ψ) is the mapping degree of

(ρ ◦Ψ)(t) := det(X(t) + iY (t)︸ ︷︷ ︸
∈U(n)

) . (2.28)

For t �xed and thus a �xed symplectic matrix Ψ(t) = ψ, the right hand side is

determined by

(
X −Y
Y X

)
= (ψψt)−1/2ψ being the orthogonal part in the polar

decomposition
ψ = P ·Q = (ψψt)1/2 · (ψψt)−1/2ψ︸ ︷︷ ︸

∈Sp(2n)∩O(2n)

. (2.29)

As in [FOOO1] we aim to assign a Maslov index to smooth maps

f : (Σ, ∂Σ)→ (M,L) (2.30)

in order to get a better insight into the behavior of pseudo-holomorphic curves. Here
Σ denotes a compact, oriented surface of genus g with h 6= 0 connected boundary
components ∂iΣ. L denotes a Lagrangian submanifold in (M2n, ω). With

(f ∗TM, f |∗∂ΣTL) =: (χ, λ) (2.31)

we de�ne a symplectic bundle pair that is

χ→ Σ, χ|∂Σ → ∂Σ (2.32)

being rank 2n symplectic vector bundles and

λ→ ∂Σ (2.33)

being a Lagrangian subbundle of the latter. By picking a compatible, almost com-
plex structure on χ → Σ it gets Hermitian and we can apply Proposition 2.66. of
[McSa]. Since ∂Σ is required to be non-empty, we �nd a unitary trivialization

φ : χ→ Σ× (R2n, ω0) . (2.34)
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The restriction of the trivialization to one of the h boundary components λ|∂iΣ
(∂iΣ ∼= S1) can thus be interpreted as a loop

γiφ : S1 → L(n) (2.35)

to which we assign our above in (2.26) de�ned Maslov index, which is denoted by
µ(φ, ∂iΣ) in the following.
The Maslov index of f is de�ned as the sum, over the boundary components of Σ,
of these, that is

µL(f) :=
h∑
i=1

µ(φ, ∂iΣ) . (2.36)

It remains to check that this de�nition is well de�ned, meaning that is independent
of the chosen trivialization φ.
For given trivializations φ1, φ2 we have

φ2 ◦ φ−1
1 : Σ× (R2n, ω0)→ Σ× (R2n, ω0)

(x, v) 7→ (x, ϕ(x)v)
(2.37)

for ϕ : Σ→ Sp(2n). For the above described loops we therefore get the relation

ϕ|∂iΣ(x) · γiφ1
(x) = γiφ2

(x) ∈ L(n) . (2.38)

With (2.27) we further deduce a relation between their Maslov indices, namely

µ(φ2, ∂iΣ) = µ(φ1, ∂iΣ) + 2µ(ϕ|∂iΣ) (2.39)

and therefore

h∑
i=1

µ(φ2, ∂iΣ) =
h∑
i=1

µ(φ1, ∂iΣ) + 2
h∑
i=1

µ(ϕ|∂iΣ)︸ ︷︷ ︸
(∗)

!
= µL(f) . (2.40)

So it remains to show that (∗) vanishes. This is true since the relevant angular part
of ϕ|∂iΣ extends to the one of

ϕ : Σ→ Sp(2n) . (2.41)

By then summing up the h relations

(ρ ◦ ϕ)∗[∂iΣ] = deg((ρ ◦ ϕ)|∂iΣ)︸ ︷︷ ︸
µ(ϕ|∂iΣ)

·[S1] (2.42)

for the homomorphism (ρ ◦ ϕ)∗ : H1(Σ; Z)→ H1(S1; Z) we get

(ρ ◦ ϕ)∗([∂1Σ] + ...+ [∂kΣ]︸ ︷︷ ︸
[∂Σ]

) =
h∑
i=1

µ(ϕ|∂iΣ) · [S1] . (2.43)

Since [∂Σ] = 0 ∈ H1(Σ; Z) we are done and the well-de�nedness of (2.36) is proven.
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Remark 2.1. For a given homotopy class

β ∈ π2(M,L) (2.44)

we have a notion of symplectic volume and Maslov index, de�ned by

ω(β) :=

∫
Σ

u∗ω respectively µL(β) := µL(u), (2.45)

for a pseudo-holomorphic curve

u : (Σ, ∂Σ)→ (M,L) with [u] = β . (2.46)

These are well-de�ned since the symplectic volume and the Maslov index of a pseudo-
holomorphic curve u are homotopy invariants (see e.g. [McSaII]).

2.3 Moduli spaces of bordered stable maps

As already announced in the introductory chapter 1, a major tool for the study of
Lagrangian submanifolds is the use of pseudo-holomorphic curves attaching them.
We shortly recall notions appearing in that context.
A detailed discussion of these moduli space analytic issues can be found in [FOOO1].
As a general introduction to the subject of stable maps we recommend chapter 5
and 6 of [McSaII].

In the following we assume (M,ω) to be a symplectic manifold and L ⊂M being
a Lagrangian submanifold.

Let (Σ,−→z = {z1, ..., zl},−→z + = {z+
1 , ..., z

+
k }) be a bordered marked stable Rie-

mann surface of genus g = 0, that is:

(i) Σ is a simply connected union of irreducible disc and sphere components
Σi (i ∈ I). The intersection of three components is empty, whereas two
components intersect in either a point (denoted as singular point) or not at
all. For two disc components their common singular point (if it exists) lies in
the boundary of each. For a sphere and a disc component they intersect (if
their intersection is not empty) in an interior point of the latter.

(ii) z1, ..., zl ∈ ∂Σ are marked points, pairwise distinct and distinct from the
singular points, called boundary marked points.

(iii) z+
1 , ..., z

+
k ∈ Σ̊ are marked points, pairwise distinct and distinct from the

singular points, called interior marked points.

For a given relative homology class

β ∈ H2(M,L; Z) (2.47)
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we consider pseudo-holomorphic curves

w : (Σ, ∂Σ)→ (M,L) (2.48)

of class β meaning w∗([Σ]) = β.
For the maps w with restrictions w|Σi =: wi we further require that one of the
following conditions is ful�lled for each i ∈ I:

(i) wi is not constant.

(ii) For Σi being a sphere component, the sum of the numbers of singular points
and marked points of Σi is greater than three.
For Σi being a disc component, 2 times the sum of the numbers of interior
singular points and interior marked points of Σi plus the sum of the numbers
of boundary singular points and boundary marked points of Σi is greater than
three.

Two such data ((Σ, {z1, ..., zl}, {z+
1 , ..., z

+
k }), w) and ((Σ′, {z′1, ..., z′l}, {z′+1 , ..., z′+k }), w′)

are said to be isomorphic if

w′ = w ◦ φ−1 , z′i = φ(zi) and z′+j = φ(z+
j ) (2.49)

for φ : Σ → Σ′ biholomorphic. These isomorphism classes form the moduli space
of pseudo-holomorphic curves, denoted byMl,k(β). It is possible to de�ne a topol-
ogy on Ml,k(β), that is used to compactify (details can be found in chapter 7 of
[FOOO1]).
In the following we use

Ml,k(β) (2.50)

for the compact moduli space.
Further notations are commonly used in the following:

(i) Ml,k=0(β) ≡Ml(β)

(ii) Mmain
l,k (β) denotes the main component, that is the connected component (a

choice of cyclic order of the boundary marked points determines a connected
component) that contains

[((D2, {z1, ..., zl}, {z+
1 , ..., z

+
k }), w)] (2.51)

where the boundary marked points zi ∈ ∂D2 = S1 are cyclically ordered with
respect to the counter clockwise orientation of S1.

(iii) Mmain,reg
l (β) ⊂Mmain

l (β) denotes the subset of maps from a disc.

(iv) Due to (2.49), the map

ev = (ev1, ..., evl; ev
+
1 , ..., ev

+
k ) :Mmain

l,k (β)→ Ll ×Mk

[((D2, {z1, ..., zl}, {z+
1 , ..., z

+
k }), w)] 7→ (w(z1), ..., w(zl), w(z+

1 ), ..., w(z+
k )),

(2.52)

called the evaluation map, is well de�ned.



Chapter 3

Algebraic Backbone of

A∞-structures

As stated in the introductory chapter one wants to organize the given setup of
Lagrangian submanifolds in a general framework. According to the stated Theorem
1.1 one can revert to the rich framework of A∞-structures. It captures the algebraic
description of at least the case for L being relatively spin . The facts of the following
chapter are relatively basic and �nd applications in di�erent areas of mathematics
(see e.g. 4.6) and physics (see e.g. 4.6). It does not mean that it is straightforward
and to illustrating it in full generality would go beyond the scope of this thesis.
So for not forgetting the main purpose of our work, namely to explore concrete
geometric situations, we try to remain on a basic level. Basic in the sense of not
plunging to deep into the strict algebra formalism. We rather pick out concepts that
are actually needed for the ongoing and discuss more or less only notions that arise
of geometric considerations. As far it is already possible at this stage of progress
we try to motivate how ideas can be seen geometrically. Firstly we thereby aim to
achieve a better readability for the geometrically orientated reader and secondly we
can not even introduce some concepts without highlighting their geometric origin.
Constructions like for example R-reduction can not be performed for general A∞-
algebras but are possible for those that arise out of the Lagrangian submanifold
setup.
After a discussion of un�ltered (classical i.e. m0 = 0) and then �ltered A∞-algebras
we try to derive a cohomology theory out of them. If we would work with the
classical ones this would be easy (δ := m1) but unfortunately since we want to
describe geometry we have to ask for possible deformations of the given A∞-algebra
to achieve this goal. In section 3.2 we describe two di�erent approaches to end up
with an appropriate coboundary operator and then de�ne a cohomology theory out
of a given A∞-algebra. In order to really achieve geometric results later on, we will
work with a potential function PO that can be de�ned in this context in an rigorous
algebraic manner.
As in many parts of the text we are gearing to the work of K. Fukaya et al. especially
[FOOO1].

19
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3.1 (Un-/Filtered) A∞-algebras

Since we treat both un�ltered and �ltered A∞-algebras in the following and in
particular try to interrelate them somehow later on (see R-reduction in chapter
3.1.2), we highlight the former ones with a bar sign " · " as e.g. (C,m). For �ltered
A∞-algebras we omit this mark and simply write (C,m).

3.1.1 Un�ltered A∞-algebras

For a given free graded R module C =
⊕
m∈Z

C
m
(R unital commutative ring with

unit 1) and its shift C[1] de�ned by C[1]m := C
m+1

one associates

Bk(C[1]) :=
⊕

m1,...,mk

(C[1])m1 ⊗ ...⊗ (C[1])mk ∼= C[1]⊗ ...⊗ C[1]. (3.1)

In the following, as part of the given data, it is endowed with homogeneous homo-
morphisms of degree +1

mk : Bk(C[1])→ C[1] (k ≥ 0)

m0 ≡ 0.
(3.2)

The thereof de�ned bar complex

B(C[1]) :=
⊕
n

Bn(C[1]) (3.3)

can be seen as a di�erential graded coalgebra with a degree 0 comultiplication

∆ : B(C[1])→ B(C[1])⊗B(C[1]) (3.4)

that is ful�lling (∆ ◦ Id) ◦∆ = (Id ◦∆) ◦∆. Here ∆ is given componentwise by

x1 ⊗ ...⊗ xk 7→
n∑
i=1

(x1 ⊗ ...⊗ xi)⊗ (xi+1 ⊗ ...⊗ xk). (3.5)

Coderivations are de�ned by extending {mk}k≥1 to degree +1 homomorphisms in
the bar complex

m̂k :
⊕
n

Bn(C[1])→
⊕
n

Bn−k+1(C[1]) (3.6)

which on the n-th component are de�ned via

x1 ⊗ ...⊗ xn 7→
n−k+1∑
l=1

(−1)deg x1+...+deg xl−1+l−1x1 ⊗ ...

...⊗ xl−1 ⊗mk(xl, ..., xl+k−1)⊗ xl+k ⊗ ...⊗ xn

(3.7)

One additionally requires
m̂k = 0 for k > n. (3.8)
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The coderivation (degree +1) d̂ : B(C[1])→ B(C[1]) is then de�ned by

d̂ :=
∞∑
k=1

m̂k. (3.9)

De�nition 3.1 (A∞-algebra)

The maps m = {mk}k∈Z de�ne an (un�itered) A∞-algebra (C,m) over R if the
following identity

d̂ ◦ d̂ = 0 (3.10)

holds.

The requirement (3.10) can be rewritten in a form that is perhaps more conve-
nient to readers who already got in contact with A∞-algebras. It relates the formal
access to A∞-algebras by using the bar complex with the `down-to-earth` motivation

(1.1) presented in the introductory chapter. Since d̂ serves a boundary map one has

0 =(d̂ ◦ d̂)(x1 ⊗ ...⊗ xn) =

=d̂(
n∑

k1=1

m̂k1(x1 ⊗ ...⊗ xn)) =

=

n−k1+1∑
k2=1

m̂k2(
n∑

k1=1

n−k1+1∑
l1=1

(−1)deg x1+...+deg xl1−1+l1−1x1 ⊗ ...

...⊗mk1(xl1 , ..., xl1+k1−1)⊗ ...⊗ xn) =

=
∑

k1+k2≤n+1

n−k1+1∑
l1=1

(−1)deg x1+...+deg xl1−1+l1−1m̂k2(x1 ⊗ ...

...⊗mk1(xl1 , ..., xl1+k1−1)⊗ ...⊗ xn︸ ︷︷ ︸
=:x′1⊗...⊗x′n−k1+1

) =

=
∑

k1+k2≤n+1

n−k1+1∑
l1=1

n−k1−k2+2∑
l2=1

(−1)

l1−1∑
i=1

(deg xi+1)+
l2−1∑
j=1

(deg x′j+1)

x′1 ⊗ ...

...⊗mk2(x′l2 , ..., x
′
l2+k2−1)⊗ ...⊗ x′n−k1+1.

(3.11)

By symmetry reasons we see that only the l2 = 1 term survives. That is by denoting

l1 ≡ l the last line and thus 0 = d̂◦ d̂ can be rewritten as the un�ltered A∞-relation:

∑
k1+k2=n+1

n−k1+1∑
l=1

(−1)deg x1+...+deg xl−1+l−1

mk2(x1, ...,mk1(xl, ..., xl+k1−1), ..., xn) = 0 for all n ≥ 1

(3.12)
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Remark that mk=0 = 0 holds in the un�ltered A∞-algebra case. One thus gets
amongst others

m1 ◦m1(x) = 0

for all x ∈ B1(C[1]) = C[1]
(3.13)

for the case n = 1. So we have found a coboundary operator that gives a cochain
complex (C[1],m1).

To be able to change from one A∞-algebra to another, we consider maps

f = {fk}k>0 : (C1,m
1)→ (C2,m

2) (3.14)

of degree 0 acting as:

fk : Bk(C1[1])→ C2[1]

with f 0 ≡ 0
(3.15)

A given set of such maps can be canonically extended to a homomorphism acting
on the direct sum B(C[1]) :=

⊕
n

Bk(C[1]) by setting:

f̂ : B(C1[1])→ B(C2[1])

x1 ⊗ ...⊗ xk︸ ︷︷ ︸
∈Bk(C[1])

7→
∑

0<k1<...<kn<k

fk1
(x1,..., xk1)⊗ ...⊗ fki+1−ki(xki+1, ..., xki+1

)⊗ ...

...⊗ fk−kn(xkn+1, ..., xk)

(3.16)

According to how f̂ is de�ned here we can consider it as a coalgebra homomor-
phism between the di�erential graded coalgebras

(B(C1[1]),∆1, d̂1)→ (B(C2[1]),∆2, d̂2) (3.17)

that is it ful�lls ∆2 ◦ f̂ = (f̂ ⊗ f̂) ◦∆1.

De�nition 3.2 (A∞-homomorphism)

A family of degree 0 maps

f = {fk}k>0 : (C1,m
1)→ (C2,m

2) (3.18)

between A∞-algebras (Ci,m
i) (i = 1, 2) is called an A∞-homomorphism if the

identity

f̂ ◦ d̂1
= d̂

2 ◦ f̂ (3.19)

is satis�ed.
For given A∞-homomorphisms f

i
: (Ci,m

i) → (Ci+1,m
i+1) (i = 1, 2) their
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composition {(f 2 ◦ f 1
)k}k≥1 is de�ned via

(f
2◦f 1

)k(x1, ..., xk) =
∑
m

∑
k1+...+km=m

f
2

m(f
1

k1
(x1, ..., xk1), ..., f

1

km(xk−km+1, ..., xk)).

(3.20)

Lemma 3.1

The set of A∞-homomorphisms is closed under composition (if it is de�ned!).

This means for A∞-homomorphisms f
i

: (Ci,m
i) → (Ci+1,m

i+1) (i = 1, 2) the
composition

f
2 ◦ f 1

: (C1,m
1)→ (C3,m

3) (3.21)

is again a A∞-homomorphism.

Proof : The important aspect of the proof is that the extension
̂

(f2 ◦ f1) of the com-

position coincides with the composition f̂
2 ◦ f̂1

of the extensions. This fact is
provided by

̂
(f2 ◦ f1)(x1 ⊗ ...⊗ xk) =

=
∑

0<k1<...<kn<k

(f2 ◦ f1)k1(x1, ..., xk1)⊗ ...⊗ (f2 ◦ f1)ki+1−ki(xki+1, ..., xki+1
)⊗ ...

...⊗ (f2 ◦ f1)k−kn(xkn+1, ..., xk) =

=
∑

0<k1<...

<kn<k

∑
l1

∑
k11+...+k1l1

=l1

f
2
l1(f1

k11
(...), ..., f1

k1l1

(...))

⊗ ...

...⊗

 ∑
l(k−kn)

∑
(k−kn)1+...

...+(k−kn)l(k−kn)
=l(k−kn)

f
2
lk−kn

(f1
(k−kn)1

(...), ..., f1
(k−kn)lk−kn

(...))

 =

= ... =

=
∑

0<l1<...

<li<k−kn

∑
0<k1<...

<kn<k

f
2
l1(f1

k1
(...), ..., f1

l1(...))⊗ ...⊗ f2
(k−kn)−li(f

1
li+1(...), ..., f1

k−kn(...)) =

= f̂
2 ◦ f̂1(x1, ..., xk)

(3.22)

Now the claim

̂
(f2 ◦ f1) ◦ d̂1 =

= f̂
2 ◦ f̂1 ◦ d̂1 = f̂

2 ◦ d̂2 ◦ f̂1 = d̂
3 ◦ f̂2 ◦ f̂1 =

= d̂
3 ◦ ̂

(f2 ◦ f1)

(3.23)

holds trivially.
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Remark 3.1. :

(i) As already remarked above equation (3.10) implies that d̂
i
can be seen as a

coboundary operator for the cochain complexes (B(Ci[1]), d̂
i
) (i = 1, 2). Ac-

cording to (3.19) the extended map f̂ is a cochain map between these com-
plexes. This shows that

f : (C1,m
1)→ (C2,m

2) (3.24)

induces a homomorphism on the cohomological level mapping

H∗(B(C1[1]);R)︸ ︷︷ ︸
:=ker d̂

1
/im d̂

1

f̂
∗

−→ H∗(B(C2[1]);R). (3.25)

(ii) According to the required de�nition (3.19) we know that the images of

x1 ⊗ ...⊗ xk ∈ Bk(C1[1]) (3.26)

under f̂ ◦ d̂1
and d̂

2 ◦ f̂ coincide that is in particular for k = 1:

f̂ 1(m1
1(x)) = m2

1(f̂ 1(x)) (3.27)

We thus can conclude that

f̂ ◦ d̂1
= d̂

2 ◦ f̂ ⇒ f 1 ◦m1
1 = m2

1 ◦ f 1 (3.28)

According to (3.13) we have f 1 a cochain map between the cochain complexes
(C1[1],m1

1) and (C2[1],m2
1). As in (i) we thus have a homomorphism

H∗(C1[1];R)︸ ︷︷ ︸
:=ker m1

1/im m1
1

f
∗
1−→ H∗(C2[1];R). (3.29)

An A∞-homomorphism is further speci�ed to be a weak homotopy equivalence
(equivalently denoted as an A∞-deformation) if the cochain map f 1 between
the two complexes (C1[1],m1

1), (C2[1],m2
1) gives rise to a cochain homotopy

equivalence. That is it exists an appropriate f
−1

1 and hi : C
k

i [1] → C
k−1

i [1]
such that:

(f
−1

1 ◦ f 1)− IdC1[1] = h1 ◦m1
1 +m1

1 ◦ h1

(f 1 ◦ f
−1

1 )− IdC2[1] = h2 ◦m2
1 +m2

1 ◦ h2

(3.30)

For R being Z or a �eld this is equivalent to that (3.29) is an isomorphism.
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3.1.2 Filtered A∞-algebras

In the following we want to be a bit more speci�c and choose Λ0,nov(R) (see de�nition
(2.1)) as our ground ring of the free graded module

⊕
m∈Z

Cm. The �ltration

F λΛ0,nov(R) := ν−1
T ([λ,∞)) = T λ · Λ0,nov(R) for λ ≥ 0 (3.31)

on Λ0,nov(R) as discussed in section 2.1 can now be used to endow Cm with a �ltra-
tion.

De�nition 3.3

A �ltration F of the form F λCm on the subgroups Cm of the free graded Λ0,nov

module
⊕
m∈Z

Cm is called an energy �ltration if the following is ful�lled:

(i) F λCm ⊂ F λ′Cm if λ > λ′

(ii) T λ0 · F λCm ⊂ F λ+λ0Cm

(iii) ek · Cm ⊂ Cm+2k

(iv) Cm is complete with respect the F

(v) ∃ vi ∈ F 0Cm \
⋃
λ>0

F λCm s.th. {vi}i∈I form a basis of Cm

The completion of
⊕
m∈Z

Cm with respect to F is denoted by C.

An explanation is in order. Recall that T and e are degree 0 respectively degree 2
generators, so the requirements how the grade of Cm changes in (ii) and (iii) make
sense. The manner how a multiplication with T alters the index λ of the �ltration
is reasonable since as described in (2.15) such an energy �ltration can be de�ned by

F λCm := T λ · Cm for λ ≥ 0. (3.32)

This de�nition justi�es why we call F an energy �ltration. It is characterized by
the superscript λ which later on is used to encode the symplectic energy of the
pseudo-holomorphic curves into the concept of �ltered A∞-algebras namely

λ ≡ ω(β) =

∫
Σ

u∗ω for u∗[Σ] = β. (3.33)

The meaning of completeness with respect to a given �ltration can either be de-
scribed by using inverse limits or more intuitively by de�ning U ⊂ Cm to be an
neighborhood of 0 if and only if it exists λ′ such that

U ⊃ F λ′Cm. (3.34)

A given sequence (xi)i∈I ⊂ Cm is now speci�ed to be a Cauchy sequence if for all
neighborhoods U of 0 one �nds a sU ∈ I such that

xµ − xν ∈ U (3.35)



26 CHAPTER 3. ALGEBRAIC BACKBONE OF A∞-STRUCTURES

for all µ, ν ≥ sU . The meaning of convergence and completeness thus follows anal-
ogously. As usually we complete a given space by considering its completion as the
space consisting of equivalence classes of Cauchy sequences of the former. For a
more detailed description the reader is referred to e.g. [AM].

Similarly to the un�ltered case one considers families of degree +1 homomor-
phisms

{mk : Bk(C[1])→ C([1])}k≥0 (3.36)

with the same mapping behavior as in the un�ltered case. Remark that we include
the k = 0 case now, more precisely the map

m0 : Λ0,nov → C[1] (3.37)

does not vanish and has to be considered. To guarantee convergence with respect to
the energy �ltration at a later stage of progress we require for {mk}k≥0 in addition

mk(F
λ1Cm1 , ..., F λkCmk) ⊆ F λ1+...+λkCm1+...+mk−k+2 (3.38)

and

m0(1) ∈ F λ′C[1] for λ′ > 0. (3.39)

Here with 1 we mean the unit of the corresponding ground ring Λ0,nov. The
�ltration as above can be used to declare a �ltration F λBk(C[1]) on the associated
bar complex Bk(C[1]) via:

F λBk(C[1]) :=
⋃

λ1+...+λk≥λ

⊕
m1,...,mk

F λ1C[1]m1 ⊗ ...⊗ F λkC[1]mk . (3.40)

This in turn allows to complete Bk(C[1]) to B̂k(C[1]) and consider the com-
pleted bar complex

B̂(C[1]) := {
∑
k

xk | xk ∈ F λkB̂k(C[1]), lim
k→∞

λk =∞}. (3.41)

De�nition 3.4

The homomorphisms {mk}k≥0 give rise to de�ne coderivations

m̂k :
⊕
n

Bn(C[1]) −→
⊕
n

Bn−k+1(C[1])

x1 ⊗ ...⊗ xn 7→
n−k+1∑
l=1

(−1)deg x1+...+deg xl−1+l−1x1 ⊗ ...⊗ xl−1⊗

⊗mk(xl, ..., xl+k−1)⊗ xl+k ⊗ ...⊗ xn.

(3.42)

For k = 0 we have

m̂k=0(x1 ⊗ ...⊗ xn) :=
n+1∑
l=1

(− 1)deg x1+...+deg xl−1+l−1x1 ⊗ ...⊗ xl−1⊗

⊗m0(1)⊗ xl ⊗ ...⊗ xn.
(3.43)
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Again we require
m̂k = 0 for k > n. (3.44)

They give rise to an operator

d̂ :=
∞∑
k=0

m̂k : B̂(C[1])→ B̂(C[1]) (3.45)

Comparably to the un�ltered A∞-algebra case we think of B̂(C[1]) as a "formal"
di�erential graded coalgebra (formal to symbolize that we work with completions)
with comultiplication

∆ : B̂(C[1])→ B̂(C[1])⊗̂B̂(C[1]) (3.46)

analogously de�ned by

∆(x1⊗̂...⊗̂xn) :=
n∑
i=1

(x1⊗̂...⊗̂xi)⊗̂(xi+1⊗̂...⊗̂xn). (3.47)

The " ·̂ " over ⊗ symbolizes that

x1⊗̂...⊗̂xn ∈ B̂n(C[1]). (3.48)

To have d̂ as a comultiplication we are requiring d̂ ◦ d̂ = 0 as a de�ning condition
for �ltered A∞-algebras below.

Lemma 3.2

The image im(d̂) is contained in B̂(C[1]), that is d̂ is a well de�ned operator.

Proof : The l-th component of d̂(
∑
k

xk) in B̂(C[1]) is given by
∑
i
m̂i(xl+i−1). Ac-

cording to (3.38) and (3.39) one sees that m̂i(xl+i−1) ∈ F λl+i−1B̂l(C[1]) and so
with (3.41) one follows that d̂(

∑
k

xk) converges componentwise i.e. really lies in

B̂(C[1]).

R-reduction:

R-reduction provides a possibility to reduce the �ltered Λ0,nov(R) module C to a
un�ltered R module C. Anticipating the later construction of a �ltered A∞-algebra
for our geometric "L ⊂ M" setup we remark that we �rst construct an un�ltered
A∞-algebra over R (mostly R = Q) and then extend it to a �ltered one by tensoring
it with Λ0,nov(R) ≡ Λ0,nov. We thus can always assume that both are linked by an
appropriate isomorphism

C ∼= C ⊗R Λ0,nov. (3.49)

The isomorphism
Λ0,nov/Λ

+
0,nov

∼= R[e, e−1](see 2.4) (3.50)
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is used to also reduce {mk}k≥0 to a family of homomorphisms {mk}k≥1. We de�ne

mk : Bk(C[1])⊗R R[e, e−1]→ C[1]⊗R R[e, e−1] (3.51)

via

mk(x1, ..., xk) := mk(x1, ..., xk) mod Λ+
0,novC. (3.52)

Assuming that the {mk} map to 0 if R[e, e−1] coe�cients are involved we can deduce
that they induce homomorphisms

mk : Bk(C[1])→ C[1] (3.53)

(here we use the symbol mk twice on purpose). The stated assumption clearly
is wrong for general A∞-algebras but again holds for the ones constructed out
of geometry. Recall that the parameter λ is used to incorporate the energy of
the pseudo-holomorphic curves. Thus (3.50) is read geometrically as modding out
curves with positive energy that is we only regard constant ones. These in turn
have Maslov index µL(β) = 0 (see 2.36). The superscript parameter ni ∈ Z of the
generator e is used to adjoin the Maslov index that is we will put µL(β) ≡ ni later.
We conclude that e0 = 1 and thus the assumption is justi�ed for our cases later on.
Needless to say all required relations transmit from mk to mk. Remark that due to
the requirement

m0(1) ∈ F λ′C[1] for λ′ > 0. (3.54)

(3.52) provides m0 = 0. In summary we get an un�ltered A∞-algebra

(C,m = {mk}k≥1) (3.55)

over R called the R-reduction of (C,m = {mk}k≥0).

G-gappedness:

The outlined incorporation of ω(β) and µL(β) via the superscripts λi and ni of
the Novikov ring Λ0,nov allows to further specify A∞-algebras by the property of
being G-gapped . Here G denotes a submonoid

(G,+, (0, 0)) ⊂ (R≥0 × 2Z,+, (0, 0)) (3.56)

that isG contains the identity element (0, 0) and is closed under the binary operation
+. In addition the following requirements are posed on G:

Condition 3.1.

(i) Let be π the projection onto the �rst factor. Then π(G) ⊂ R≥0 lies discrete in
R≥0.

(ii) ∀p ∈ R≥0: G ∩ ({p} × 2Z) is �nite.

(iii) G ∩ ({0} × 2Z) consists just of the identity element (0, 0).
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General A∞-algebras are said to be G-gapped if the mk's decompose as

mk =
∑
i

T λienimk,i for (λi, ni) ∈ G (3.57)

for mk,i : Bk(C[1])→ C[1] being R module homomorphisms.
Due to how they arise, the A∞-algebras that we geometrically construct later are
G-gapped when setting λi = ω(β), ni = µL(β)/2, denoting mk,i ≡ mk,β and sum-
ming over all possible β ∈ H2(M,L; ) that can be realized by pseudo-holomorphic
curves. Above we already discussed point (iii) namely that constant curves have
vanishing Maslov index. Properties (i) (energies lie discrete) and (ii) (for �xed en-
ergies there is only a �nite number of possible Maslov indices) can be deduced by
Gromov�s compactness theorem. We further have µL(β) ∈ 2Z since we consider
oriented Lagrangians.

The preceding facts are summarized in the following de�nition:

De�nition 3.5

(a) (
⊕
m∈Z

Cm,m = {mk}k≥0) equipped with a �ltration F of the form F λCm

is said to be a �ltered A∞-algebra if F is an energy �ltration and the
following properties hold:

(i) (3.38) and (3.39)

(ii) d̂ ◦ d̂ = 0

(b) The un�ltered A∞-algebra (C,m = {mk}k≥1) constructed out of (C,m) as
in (3.49)-(3.53) is denoted as its R-reduction

(c) If

m0 ≡ 0 (3.58)

(C,m) is said to be strict.

(d) (C,m) is called unital with unit e if and only if

∃ e ∈ C[1]−1 = C0 (3.59)

satisfying:

(i) m2(e, x) = (−1)deg(x)m2(x, e) = x

(ii) mk+1(x1, ..., e, ..., xk) = 0 for k ∈ {0, 2, 3, ...}

(e) If the maps {mk}k≥0 decompose as

mk =
∑
i

T λienimk,i (3.60)
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for R module homomorphisms mk,i : Bk(C[1])→ C[1] and

G = {(λi, ni)} ⊂ R≥0 × 2Z (3.61)

satis�es condition 3.1, then (C,m) is called G-gapped.

(f) Another A∞-algebra (C ′,m′) is an A∞-deformation of (C,m) if there is an
weak homotopy equivalence (see Remark 3.1 (ii))

f : (C,m)→ (C
′
,m′) (3.62)

between their R-reductions.

Remark 3.2. (i) For considering A∞-deformations, remark that one �rst has to
perform a R-reduction before being able to talk about weak homotopy equiva-
lences. Recall that one needs m1 to be a coboundary map for that notion. For
�ltered A∞-algebras this does not hold in general due to the presence of the
m0 map but can be achieved by R-reducing them to un�ltered ones and thus
gets m1 ◦m1 = 0.

(ii) Similarly to (3.11) one can show that

d̂ ◦ d̂ = 0

⇔∑
k1+k2=n+1

∑
l

(−1)deg x1+...+deg xl−1+l−1

mk2(x1, ...,mk1(xl, ..., xl+k1−1), ..., xn) = 0 for all n ≥ 0.

(3.63)

The latter relation is known as the �ltered A∞-relation (k1, k2 ≥ 0).

(iii) For n = 1 the above A∞-relation writes as

m1(m1(x)) = −m2(m0(1), x)− (−1)deg x+1m2(x,m0(1)). (3.64)

In order to de�ne Floer cohomology out of an A∞-algebra and to use m1 as a
possible coboundary operator, one therefore has to �nd ways to make m0 van-
ish. Such an approach is described in section (3.2.1) where we discuss ways
how A∞-algebras can be deformed into strict ones.
Since such deformations are mostly impossible to perform we follow another
possibility in section (3.2.2) namely to de�ne an appropriate coboundary op-
erator in order to achieve that both terms on the right hand side cancel each
other.

As in the un�ltered A∞-algebra case one also considers the notion of �ltered A∞-
homomorphisms between �ltered A∞-algebras. A full and proper treatment shall
be omitted here. We only state the necessary facts that become important in later
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sections. For a detailed description of that subject the interested reader is referred
to the literature (e.g. [FOOO1]) where concepts are presented in full generality.
For given �ltered A∞-algebras (Ci,m

i) (i = 1, 2) over Λ0,nov and a family of degree
0 homomorphisms

f = {fl : Bl(C1[1])→ C2[1]}l≥0 (3.65)

we achieve convergence with respect to the �ltration F when additionally requiring:

f0(1) ∈ F λ′C2[1] for λ′ > 0

and

fl(F
λBl(C1[1])) ⊆ F λC2[1]

(3.66)

As in the last section we can thereby de�ne a homomorphism f̂ (formal coalgebra
homomorphism) between the associated completed bar complexes (formal di�eren-
tial graded coalgebras)

B̂(C1[1])→ B̂(C2[1]). (3.67)

On the l-th component of
⊕
n

Bn(C1[1]) it is of the form

f̂(x1 ⊗ ...⊗ xl) =
∑

0≤l1≤...≤ln≤l

fl1(x1, ..., xl1)⊗ ...⊗

⊗ fli+1−li(xli+1
, ..., xli+1)⊗ ...⊗ fl−ln(xln+1, ..., xl).

(3.68)

For the l = 0 case we set

f̂(1) = 1 + f0(1) + f0(1)⊗ f0(1) + ... . (3.69)

We remark that convergence (wrt. the energy �ltration F) of the right hand side of
both equations is given here since we require (3.66) for f = {fl}l≥0.
The homomorphism

f = {fl}l≥0 : (C1,m1)→ (C2,m2) (3.70)

is said to be a �ltered A∞-homomorphism if

f̂ ◦ d̂1 = d̂2 ◦ f̂ (3.71)

It is further speci�ed to be a strict �ltered A∞-homomorphism if

f0 ≡ 0. (3.72)

The A∞-homomorphism f is said to be unital if it "preserves" the unit. On the
basis of De�nition (3.5)(d) this means in this context

f1(e1) = e2

and

fl(x1, ..., xi−1, e1, xi+1, ..., xl) = 0 for l ≥ 2.

(3.73)

For composing di�erent A∞-homomorphism one can make use of the analogue to
Lemma (3.1). It naturally holds as well in the �ltered case.
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Lemma 3.3

The Composition of �ltered A∞-homomorphisms

f i : (Ci,m
i)→ (Ci+1,m

i+1) i = 1, 2 (3.74)

is de�ned by

(f 2 ◦ f 1)l(x1, ..., xl) =
∑
m

∑
l1+...+lm=m

f 2
m(f 1

l1
(x1, ..., xl1), ..., f 1

lm(xl−lm+1, ..., xl)).

(3.75)
The set of �ltered A∞-homomorphisms is closed under composition (if it is de-
�ned!). This means

f 2 ◦ f 1 : (C1,m
1)→ (C3,m

3) (3.76)

is again a �ltered A∞-homomorphism.

Proof : It works analogously to the proof of Theorem (3.1). The fact that we now
work with l ∈ {0, 1, 2, ...} instead of k ∈ {1, 2, ...} a�ects on that the strict ” < ”
in the appearing sums get replaced by ” ≤ ” signs.

Based on the remarks about R-reduction (3.53) and G-gappedness of (3.57) A∞-
algebras we outline that these concepts can be examined for A∞-homomorphisms.

Again by modding out the ideal Λ+
0,nov, {fk}k≥0 boils down to an (un�ltered)

A∞-homomorphism

{fk : Bk(C1[1])→ (C2[1])}k≥1 (3.77)

over the ring R.

As already expected {fk}k≥0 is called G-gapped (G ⊂ R≥0 × 2Z submonoid) if
it decomposes as

fk =
∑
i

T λienifk,i for (λi, ni) ∈ G (3.78)

for fk,i being R module homomorphisms

Bk(C1[1])→ (C2[1]). (3.79)

Remark that both stated concepts appear when regarding �ltered A∞-algebras aris-
ing out of "L ⊂M" geometry regards and setting (λi, ni) = (ω(β), µL(β)/2).

3.2 Search for A∞-Maurer-Cartan solutions

As known in standard Floer theory, it is mostly the hard part to really �nd a possible
boundary operator δ. Bubbling phenomena result in that the requirement

δ ◦ δ = 0
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does not hold in general. We are again faced with this kind problem when aiming
to de�ne Floer Cohomology out of given A∞-algebras constructed in order to for-
malize the behavior of Lagrangian submanifolds. See section 5.3 for a discussion of
possible ways for constructing the link between the geometry side we actually want
to examine and the formal A∞-algebra part. In this section we are still remaining
to describe the algebraic point of view. Its motivation is to demonstrate how to use
the features of A∞-algebras in order to face and actually bypass the circumstances
mentioned above. In the end appropriate deformations shall provide coboundary
operations

δ : C[1]→ C[1] (3.80)

and therefore induce a cohomology theory.

As seen in (3.64) for degree n = 1 the A∞-relation provides the identity

m1(m1(x)) +m2(m0(1), x) + (−1)deg x+1m2(x,m0(1)) = 0 (3.81)

for
x ∈ Bk=1(C[1]) = C[1]. (3.82)

When regarding equation (3.81) there are three more or less obvious ways how to
reduce it to

m1 ◦m1 = 0 (3.83)

that is to make the last two summands vanish and then declare

δ := m1 (3.84)

as a coboundary operator for C[1]:

(i) Having m0(1) ≡ 0 would be the most obvious way but is not possible in
general since the maps {mk} are determined by the underlying geometry.

(ii) The idea that we follow in section 3.2.1 will be to use an already constructed
A∞-algebra (C,m) and try to deform it to another A∞-algebra (C,mb) for an
appropriate b ∈ C1. The meaning of b and mb will be clari�ed in the stated
section. The advantage of (C,mb) now is that it is a strict (see Def. 3.5 (c))
one and we thus conclude that for (C,mb) equation (3.81) is of the form

mb
1 ◦mb

1 = 0. (3.85)

We then put δ := mb
1.

Such elements b will form the set of strict Maurer-Cartan solution M̂strict(C)
(see Def. 3.7).

(iii) Since it is often impossible to �nd such an element b necessary for (ii) we
present a weaker version of (ii) in section (3.2.2). The idea will be to convert
equation (3.81) in a way such that the last two summands cancel each other.

To do so we try to �nd so called weak Maurer-Cartan solution M̂weak(C) (see
Def. 3.118).
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The nice feature of the upcoming section 3.2 is that we can face geometric di�cul-
ties by purely algebraic methods already incorporated in the A∞-algebras� nature.
Another tool that we thereof will gain is the potential function (see (3.126))

PO : M̂weak(C)→ Λ+
0,nov. (3.86)

We will see that
M̂strict(C) = PO−1(0) ⊂ M̂weak(C). (3.87)

As already noticed in the introductory chapter A∞-algebras appear in the formula-
tion of string �eld theory. Physicists also developed a notion of a potential function,
the so called superpotential

Ψ : Λ0,nov × ...× Λ0,nov → Λ0,nov. (3.88)

In addition it can surprisingly be used in mathematics in order to detect strict
Maurer-Cartan solutions. In chapter 7 we try to highlight how PO and Ψ are
interrelated. Once more both disciplines thus can pro�t from one anothers� work.
As in most parts of the text we follow the ideas of K. Fukaya et al. presented in
[FOOO1].

3.2.1 (Strict) Unobstructedness via Deformation

In the following we need the expression

eb := 1 + b+ b⊗ b+ b⊗ b⊗ b+ ... . (3.89)

In order to handle them properly we want these objects to live in the completed
bar complex B̂(C[1]) (see (3.41)). To satisfy this requirement one needs

b⊗ ...⊗ b︸ ︷︷ ︸
l

!
∈ F λlB̂l(C[1]) with lim

l→∞
λl =∞. (3.90)

According to the properties of the energy �ltration (de�nition 3.3 and equations
(3.38)-(3.39)) this is guaranteed amongst others for elements

b ∈ (C[1])0 with b ≡ 0 mod Λ+
0,nov. (3.91)

That is one has b ∈ F λC1 (for λ > 0) and thus with (3.40) we get

b⊗ ...⊗ b︸ ︷︷ ︸
l

∈ F λ·lB̂l(C[1]) (3.92)

and therefore conclude
eb ∈ B̂(C[1]). (3.93)

As outlined above we want to deform the A∞-homomorphisms m to mb for such a
b satisfying (3.91).
The upcoming de�nition describes how this modi�cation is performed.



3.2. SEARCH FOR A∞-MAURER-CARTAN SOLUTIONS 35

De�nition 3.6

The deformation of an �ltered A∞-algebra (C,m) with b satisfying (3.91) is
denoted by (C,mb). The deformed homomorphisms

{mb
l : Bl(C[1])→ C[1]}l≥0 (3.94)

are de�ned componentwise by

x1, ..., xl 7→
∑
k0,...,kl

ml+
∑
ki(b, ..., b︸ ︷︷ ︸

k0

, x1, b, ..., b︸ ︷︷ ︸
k1

, ..., b, ..., b︸ ︷︷ ︸
kl−1

, xl, b, ..., b︸ ︷︷ ︸
kl

) =

=: m(ebx1e
b...ebxle

b).

(3.95)

The next proposition enables us to apply the full A∞-machinery and outline a
su�cient condition posed on b for

mb
1 ◦mb

1 (3.96)

to vanish identically.

Proposition 3.1

For (C,m) being a �ltered A∞-algebra, the graded module C with deformed
maps {mb

l}l≥0 carries the structure of a �ltered A∞-algebra (C,mb).
One has (C,mb) to be a strict A∞-algebra (i.e. mb

0 = 0) if and only if the
corresponding b ∈ (C[1])0, b ≡ 0 mod Λ+

0,nov ful�lls

d̂(eb) = 0. (3.97)

Proof : For the �rst assertion we just have to check property (i), (ii) of de�nition 3.5.
Since the module C is not a�ected by the deformation process, the condition on
Cm to carry an energy �ltration F λCm (see def. 3.3) carries over to the deformed
case.
Due to the properties of b ∈ F λC1 (λ > 0) and the primordial homomorphisms
mk, (3.39) holds for m

b
k=0 since one has (λ, λ′ > 0)

mb
0(1) = m(eb) = m0(1)︸ ︷︷ ︸

∈Fλ′C[1]1

+ m1(b)︸ ︷︷ ︸
∈Fλ·1C2

+m2(b, b)︸ ︷︷ ︸
∈Fλ·2C2

+... ∈ F λ′′=min{λ,λ′}>0C[1].

(3.98)
The argumentation works analogously for proving property (3.38), i.e.

mb
l ( x1︸︷︷︸
∈Fλ1Cm1

, ... , xl︸︷︷︸
∈FλlCml

) =
∑

k0,...,kl

ml+
∑
kl(b, ..., b, x1, ..., xl, b, ..., b)︸ ︷︷ ︸

∈F (k0+...+kl)·λ+λ1+...+λlCk1+...+kl+m1+...+ml−(
∑
ki+l)+2

(3.99)

⊆ F λ1+...+λlCm1+...+ml−l+2.
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The best way to see that d̂b serves as a coboundary map for the completed complex
B̂(C[1]) (i.e. to check d̂b ◦ d̂b = 0) is to directly compare d̂b with d̂.
We have

0 = (d̂ ◦ d̂)(ebx1e
b ⊗ ...⊗ ebxneb) =

= d̂

(∑
l

m̂l(ebx1e
b ⊗ ...⊗ ebxneb)

)
=

= d̂

(
n∑
l=0

n−l+1∑
k=1

(−1)··· ebx1e
b ⊗ ...⊗m(ebxkeb, ..., ebxk+l−1e

b)⊗ ...⊗ ebxneb
)

=

=
n−l+1∑
j=0

n−l−j+2∑
i=1

∑
l

n−l+1∑
k=1

(−1)··· ebx1e
b ⊗ ...⊗m(ebxieb ⊗ ...⊗

⊗m(ebxkeb, ..., ebxk+l−1e
b)⊗ ...)⊗ ...⊗ ebxneb.

(3.100)

The coderivation d̂b on B̂(C[1]) acts as follows (on the n-th component)

(d̂b ◦ d̂b)(x1 ⊗ ...⊗ xn) = d̂b(
n∑
l=0

m̂b
l (x1 ⊗ ...⊗ xn)) =

= d̂b(
n∑
l=0

n−l+1∑
k=1

(−1)deg x1+...+deg xk−1+k−1x1 ⊗ ...⊗ xk−1⊗

⊗mb
l (xk, ..., xk+l−1)⊗ xk+l ⊗ ...⊗ xn) =

= d̂b(
n∑
l=0

n−l+1∑
k=1

(−1)deg x1+...+deg xk−1+k−1x1 ⊗ ...⊗ xk−1⊗

⊗m(ebxkeb, ..., ebxk+l−1e
b)⊗ xk+l ⊗ ...⊗ xn) =

=
n−l+1∑
j=0

n−l−j+2∑
i=1

n∑
l=0

n−l+1∑
k=1

(−1)···x1 ⊗ ...⊗ xi−1⊗

⊗m(ebxieb ⊗ ...⊗m(ebxkeb, ..., ebxk+l−1e
b)⊗ ...)...⊗ xn =︸︷︷︸

(3.100)

= 0.
(3.101)

Here we deduce that d̂b ◦ d̂b = 0 since it is a necessary condition for (3.100) to
vanish since b ≡ 0 mod Λ+

0,nov.
Remark that if R-reduction is possible for (C,m) (as in all geometric inspired cases
that we regard) it can also be performed for the deformed structure (C,mb). If mk

does not contain R[e, e−1] then neither does mb
k.
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The second claim about the strictness holds by observing

d̂(eb) =
∑
l=0

m̂l(1) +
1∑
l=0

m̂l(b) +
2∑
l=0

m̂l(b⊗ b) + ... =

= m̂0(1) + m̂0(b) + m̂1(b) + m̂0(b⊗ b) + m̂1(b⊗ b) + m̂2(b⊗ b) + ... =

= m0(1) +m0(1)⊗ b+ (−1)deg b+1b⊗m0(1) + ... =︸︷︷︸
deg b=1

= (1 + b+ b⊗ b+ ...)⊗ (m0(1) +m1(b) +m2(b, b) + ...)⊗ (1 + b+ b⊗ b+ ...) =

= ebm(eb)eb =

= ebmb
0(1)eb.

(3.102)

So we conclude that strictness of (C,mb) (i.e. mb
0(1) = 0) is given if and only if

d̂(eb) = 0.

Remark 3.3. (i) We are deforming the given A∞-algebra into a strict one in
order to �nd a possible coboundary map.
For an element b as above with d̂(eb) = 0 it can now be de�ned as

δb(x) :=
∑
l1,l0≥0

ml1+l0+1(b, ..., b︸ ︷︷ ︸
l1

, x, b, ..., b︸ ︷︷ ︸
l0

) = m(ebxeb) = mb
1(x)

for x ∈ B1(C[1]) = C[1]

(3.103)

As has already been described in the motivation, the A∞-relation with mb
0 = 0

directly leads us to

δb ◦ δb = mb
1 ◦mb

1 = 0 (3.104)

so δb is a degree +1 map that squares up to 0 that is δb a coboundary map.

(ii) The detour via the deformed A∞-algebra (C,mb) was necessary to de�ne a
map δb being a coboundary operation for the complex C.
An alternative approach would be, instead of examining how to deform a given
�ltered A∞-algebra (C,m), to de�ne for b1, b0 satisfying (3.91)

δb1,b0(x) :=
∑
i,j≥0

mi+j+1(b1, ..., b1︸ ︷︷ ︸
i

, x, b0, ..., b0︸ ︷︷ ︸
j

) ≡ m(eb1xeb0)

for x ∈ B1(C[1]) = C[1]

(3.105)
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and then consider

d̂(eb1xeb0) =

=
∑
i,j≥0

i+j+1∑
l=0

m̂l(b1 ⊗ ...⊗ b1︸ ︷︷ ︸
i

⊗x⊗ b0 ⊗ ...⊗ b0︸ ︷︷ ︸
j

) =

=
∑
i,j≥0

i+j+1∑
l=0

(∑
(−1)···b1 ⊗ ...⊗ b1 ⊗ml(b1, ..., b1)⊗ b1 ⊗ ...⊗ b1 ⊗ x⊗ b0 ⊗ ...⊗ b0+

+
∑

(−1)···b1 ⊗ ...⊗ b1 ⊗ml(b1, ..., b1, x, b0, ..., b0)⊗ b0 ⊗ ...⊗ b0+

+
∑

(−1)···b1 ⊗ ...⊗ b1 ⊗ x⊗ b0 ⊗ ...⊗ b0 ⊗ml(b0, ..., b0)⊗ b0 ⊗ ...⊗ b0

)
=

=d̂(eb1)xeb0 + eb1m(eb1xeb0)eb0 + eb1xd̂(eb0) =︸︷︷︸
if d̂(eb1 )=d̂(eb0 )=0

=eb1δb1,b0(x)eb0 .

(3.106)

With the A∞-relation we thus get

0 = (d̂ ◦ d̂)(eb1xeb0) = d̂(eb1δb1,b0(x)eb0) =

= eb1(δb1,b0 ◦ δb1,b0)(x)eb0
(3.107)

that is, δb1,b0 is a coboundary map when d̂(eb1) = d̂(eb0) = 0.
Clearly the concept boils down to

δb1,b0 =︸︷︷︸
b1=b0=b

δb,b ≡ δb (3.108)

so the calculation (3.102) is redundant in retrospect, but the more algebraically
oriented concepts presented there demonstrate how to construct a strict �ltered
A∞-algebra out of a given (not necessarily strict) �ltered A∞-algebra.

De�nition 3.7

If there exist elements b ∈ (C[1])0, b ≡ 0 mod Λ+
0,nov with

d̂(eb) = 0 (3.109)

the underlying A∞-algebra (C,m) is called (strictly) unobstructed.
The set consisting of those so called (strict) solutions of the Maurer-Cartan
equation or equivalently (strict) bounding cochains is denoted by

M̂strict(C) := {b ∈ (C[1])0 | b ≡ 0 mod Λ+
0,nov, d̂(eb) = 0}. (3.110)
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(C,m) is called strictly obstructed for M̂strict(C) = ∅. For

b, b0, b1 ∈ M̂strict(C) (3.111)

the Lagrangian Floer Cohomology for an A∞-algebra (C,m) is de�ned by

HF (C, b; Λ0,nov) := H(C, δb)

HF (C, b1, b0; Λ0,nov) := H(C, δb1,b0)
(3.112)

Be aware that the two following questions are still unanswered and remain to
be clari�ed:

Remark 3.4. (i) How shall one de�ne the Lagrangian Floer Cohomology in this

manner if M̂strict(C) = ∅?
We refer the reader to the upcoming section 3.2.2 where we try to weaken the
requirement

d̂(eb) =︸︷︷︸
(3.102)

ebm(eb)eb = 0 and thus m(eb) = 0. (3.113)

There we observe that if (C,m) is unital with unit e, the condition

m(eb) ∼ e (3.114)

su�ces to de�ne a coboundary map δb.
The additionally speci�cation (strict) in the de�nition above is important when
the facts of the next section come into play. We want to be able to distinguish
between the strict (m(eb) = 0) and the weak (m(eb) ∼ e) bounding cochains b.
Remark that we will just omit the pre-indication (strict) when the meaning is
clear and just highlight the weak cases.

(ii) How does the de�ned HF (C, b; Λ0,nov) respectively HF (C, b1, b0; Λ0,nov) actu-

ally depend on the chosen b, b0, b1 ∈ M̂strict(C)?

3.2.2 (Weak) Unobstructedness via the Domain of PO

The last section posed a quite strict requirement on b to be an element of M̂strict(C).
In this section we are now searching for ways to weaken this statement.
We show that elements

b ∈ M̂weak(C) ⊃ M̂strict(C) (3.115)

that is those satisfying
m(eb) ∼ e (3.116)

for (C,m) being a unital �ltered A∞-algebra with unit e, are su�cient to de�ne a
coboundary map

δb : C[1]→ C[1]. (3.117)
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Further in this context we de�ne a potential function PO that maps b onto the
proportionality factor of (3.116) that is PO|M̂strict(C) = 0.

De�nition 3.8

For a unital A∞-algebra (C,m) (i.e. ∃ unit e ∈ C0 satisfying Def. 3.5 (d)) the
set of weak solutions of the Maurer-Cartan equation respectively weak bounding
cochains is de�ned as

M̂weak(C) := {b ∈ (C[1])0 | b ≡ 0 mod Λ+
0,nov, m(eb) = c · e · e

for c ∈ Λ
+(0)
0,nov}

(3.118)

for e being the degree 2 generator of Λ0,nov. Here Λ
+(0)
0,nov denotes the degree 0

part of Λ+
0,nov.

If one can �nd such an element b the A∞-algebra (C,m) is called weakly unob-
structed.
It is called weakly obstructed for M̂weak(C) = ∅.

Proposition 3.2

For b ∈ M̂weak(C) one can de�ne a coboundary operator

δweakb ≡ δb : C[1]→ C[1]

x→
∑
l1,l0≥0

ml1+l0+1(b, ..., b︸ ︷︷ ︸
l1

, x, b, ..., b︸ ︷︷ ︸
l0

) ≡ m(ebxeb). (3.119)

Proof : Recall the de�nition 3.45 of

d̂ =
∞∑
k=0

m̂k : B̂(C[1])→ B̂(C[1]). (3.120)

A formal way of illustrating this map is

d̂ : B̂(C[1]) ∆→ B̂(C[1])⊗ B̂(C[1]) id⊗∆−→ B̂(C[1])⊗
3 (−1)···id⊗m⊗id−−−−−−−−−−→ B̂(C[1]) (3.121)

for m as in (3.95). Since (C, {mk}) is an A∞-algebra we have that all components
of the image vanish especially the one for k = 1 that is in B̂k=1(C[1]) = C[1]. With
(3.121) we therefore conclude

d̂ ◦ d̂ = 0⇒ m ◦ d̂ = 0. (3.122)
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So we are allowed to continue via

0 =m(d̂(ebxeb)) =

=m{
∑
l

m̂l((1 + b+ b⊗ b+ ...)(x)(1 + b+ b⊗ b+ ...))} =

=m{
1∑
l=0

m̂l(x) +
2∑
l=0

m̂l(b⊗ x) +
2∑
l=0

m̂l(x⊗ b) + ...} =︸︷︷︸
(∗)

=m{(1 + b+ b⊗ b+ ...)(m1(x) +m2(x, b) +m2(b, x) +m3(b, x, b) + ...)(1 + b+ ...)+
+ ((1 + b+ b⊗ b+ ...)(m0(1) +m1(b) +m2(b, b) + ...)(1 + b+ b⊗ b+ ...))

x(1 + b+ b⊗ b+ ...)+

+ (−1)deg(x)+1(1 + b+ b⊗ b+ ...)x
((1 + b+ b⊗ b+ ...)(m0(1) +m1(b) +m2(b, b) + ...)(1 + b+ b⊗ b+ ...))} =

=m(ebδb,b(x)eb) +m(d̂(eb)xeb) + (−1)deg(x)+1m(ebxd̂(eb)) =︸︷︷︸
(3.102)

=
∑
l

m2l+1(b, ..., b︸ ︷︷ ︸
l

, δb,b(x), b, ..., b︸ ︷︷ ︸
l

) +m(ebm(eb)ebxeb)+

+ (−1)deg(x)+1m(ebxebm(eb)eb) =︸︷︷︸
(3.118)

=(δb,b ◦ δb,b)(x) + ce ·m(ebeebxeb)︸ ︷︷ ︸
=m2(e,x)

+(−1)deg(x)+1ce ·m(ebxebeeb)︸ ︷︷ ︸
=m2(x,e)

=︸︷︷︸
Def.(3.5)(d)

=(δb,b ◦ δb,b)(x) + ce · x+ (−1)1ce · x =
=(δb,b ◦ δb,b)(x).

Remark that for (∗) we reordered the summands and that according to (3.42) for
the 2nd and the 3rd part of the upcoming terms one has

(−1)n(deg(x)+1)+(k−1)(

=1︷ ︸︸ ︷
deg(b) +1) =

=(−1)n(deg(x)+1) =
{

1, n = 0 for 2nd part

(−1)deg(x)+1, n = 1 for 3rd part

(3.123)

De�nition 3.9

For
b ∈ M̂weak(C) (3.124)

the Lagrangian Floer Cohomology for an unital �ltered A∞-algebra (C,m) is
de�ned by

HF (C, b; Λ0,nov) := H(C, δb) (3.125)

The headline of this section advises us to examine the domain of a potential
function PO. Here in this setup it is de�ned as a mapping
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PO : M̂weak(C)→ Λ
+(0)
0,nov

PO(b) de�ned by m(eb) = PO(b)ee
(3.126)

One has M̂strict(C) ⊂ M̂weak(C) and therefore for b with PO ≡ 0 the weak unob-
structed case can be strenghtened to the results of section 3.2.1.

A natural question arises about Maurer-Cartan solutions in the context of this
and the preceding section.
What happens when applying unital (see (3.73)) A∞-homomorphisms to them?

The following argumentation works likewise for unobstructed respectively weakly
unobstructed A∞-algebras. So we neglect the indication strict and weak in the
following.
Our goal is to show that for a given unital A∞-homomorphism

f : (C1,m1)→ (C2,m2) (3.127)

it is possible to de�ne an induced map

f∗ : (C1[1])0
mod︸ ︷︷ ︸

⊃M̂(C1)

:= {x ∈ (C[1])0 | x ≡ 0 mod Λ+
0,nov} → (C2[1])0

mod︸ ︷︷ ︸
⊃M̂(C2)

(3.128)

that preserves the property of being a Maurer-Cartan solution that is we have

f∗ : M̂(C1)→ M̂(C2). (3.129)

Even a stronger fact can be proven, namely that the commutation relation

PO2 ◦ f∗ = PO1 (3.130)

is satis�ed.

The map f∗ : (C1[1])0
mod → (C2[1])0

mod shall be de�ned as

f∗(x) := f(ex) = f0(1) + f1(x) + f2(x, x) + ... . (3.131)

The image im(f∗) is really contained in 0-th part (C2[1])0 since f is assumed to be
of degree 0 (see (3.65)). In (3.66) we further required that the energy �ltration is
preserved by f . This thus provides the additional information that

f∗(x) ∈ (C2[1])0
mod. (3.132)

Lemma 3.4

A unital �ltered A∞-homomorphism f between unital �ltered A∞-algebras
(C1,m

1) and (C2,m
2) (with units e1 resp. e2 = f1(e1)) induces a map

f∗ : M̂(C1)→ M̂(C2)

b 7→ f(eb)
(3.133)
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Further the commutation relation

PO2 ◦ f∗ = PO1 (3.134)

is satis�ed for
POi : M̂weak(Ci)→ Λ

+(0)
0,nov (i = 1, 2) (3.135)

being the corresponding potential functions.

Proof : Take an element b ∈ M̂(C1), this means that either

d̂1(eb) =︸︷︷︸
(3.102)

ebm1(eb)eb = 0⇒ PO1(b) = 0 (3.136)

in the strict or

m1(eb) = cee1 ⇒ PO1(b) = c (3.137)

for the weak case. According to the de�nition of f∗(b) = f(eb) we have to check
whether

d̂2(ef(eb)) =︸︷︷︸
proof analog. to (3.102)

ef(eb)m2(ef(eb))ef(eb) = 0⇒ PO2(f(eb)) = 0

(3.138)
respectively

m2(ef(eb)) = c′ee2 ⇒ PO2(f(eb)) = c′ (3.139)

holds.
The assertion about the commutation of f∗ with POi holds then trivially in the
strict case since

POi ≡ 0 (i = 1, 2). (3.140)

In the weak case we are done if we can show that

PO1(b) = c = c′ = PO2(f∗(b)). (3.141)

To get a better insight on what is happening let us analyse the term ef(eb) more
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properly:

ef(eb) =

= 1 + f(eb) + f(eb)⊗ f(eb) + ... =
= 1 + (f0(1) + f1(b) + ...) + (f0(1) + f1(b) + ...)⊗ (f0(1) + f1(b) + ...) + ... =
= 1 + f0(1) + f0(1)⊗ f0(1) + ...+

+ f1(b) + f1(b)⊗ f0(1) + f0(1)⊗ f1(b) + f0(1)⊗ f0(1)⊗ f1(b) + ...+
+ f2(b⊗ b) + ... =

= 1 + f0(1) + f0(1)⊗ f0(1) + ...+

+
∑

0≤k1≤...≤kn≤1

fk1(b, ..., b︸ ︷︷ ︸
k1

)⊗ ...⊗ f1−kn(b, ..., b︸ ︷︷ ︸
1−kn

)+

+
∑

0≤k1≤...≤kn≤2

fk1(b, ..., b︸ ︷︷ ︸
k1

)⊗ ...⊗ f2−kn(b, ..., b︸ ︷︷ ︸
2−kn

)+

+ ... =︸︷︷︸
(3.68),(3.69)

= f̂(1) + f̂(b) + f̂(b⊗ b) + ... =

= f̂(1 + b+ b⊗ b+ ...) =

= f̂(eb)
(3.142)

The equation ef(eb) = f̂(eb) allows to continue

ef(eb)m2(ef(eb))ef(eb) = d̂2(ef(eb)) = d̂2(f̂(eb)) =︸︷︷︸
(3.71)

= f̂(d̂1(eb)) = f̂(ebm1(eb)eb) =

= f̂(ebcee1e
b) =

= cef̂((1 + b+ b⊗ b+ ...)e1(1 + b+ b⊗ b+ ...)) =︸︷︷︸
(3.73)

= ce
[
(1 + f(eb) + f(eb)⊗ f(eb) + ...)f1(e1)

(1 + f(eb) + f(eb)⊗ f(eb) + ...)
]

=

= ef(eb)(cef1(e1))ef(eb) =

= ef(eb)(cee2)ef(eb).

(3.143)

When comparing both hand sides one gets

m2(ef(eb)) = cee2 (3.144)

and thus c = c′. This forms the end of the proof and at the same time �nishes
our at some parts geometrically inspired review about A∞-algebras focusing on the
construction of coboundary operators.



Chapter 4

Fundamentals of Kuranishi

Structures

The preceding chapter introduces the useful framework of A∞-algebras. It is the
underlying concept out of which one wants to construct a Lagrangian Floer co-
homology theory under certain conditions posed on the Lagrangian submanifold
L. Another necessary tool, so called Kuranishi structures become helpful for de-
scribing concrete geometric situations, like in our case the behavior of Lagrangian
submanifolds L ⊂ M , in an A∞ fashion. There are several ways of how to face
these assignments. All of these methods have an important ingredient in common.
One has to �nd a way of how the moduli space M of pseudo-holomorphic curves
attaching the Lagrangians can be treated in a transparent fashion.
As in most parts of this text we will follow the ideas of K. Fukaya et al.. See
[FOOO1] for a treatment of the general theory respectively [FOOO2] for how it is
specialized to the situation of toric symplectic manifolds.
In standard Floer theory a proper handling of the moduli space of pseudo-holomophic
curves is necessary in order to �nd an appropriate boundary operator. In our situa-
tion we are confronted with similar di�culties, namely transversality and orientation
issues of the moduli space. Unfortunately emerging complicacies seem to be even
more hard to handle. For example moduli spacesMl+1(β) for di�erent numbers l
of marked points and homology types β have to be considered at the same time,
that is boundaries arise as �ber products of other moduli spaces (see e.g. (5.91)).
In this chapter we remain to stay on a very formal level. This is due to the fact that
the concept of Kuranishi structures �nd applications in di�erent areas of mathe-
matics (see e.g. [J]) and physics (see e.g. [ChRu]). So let us give a short outline on
what will be done here.
We �rst summarize some main facts about the general buildup of K. structures. A
discussion follows, aiming to clarify the meaning of endowing K. structures with
tangent bundles and what is meant by the notion of orientability in the context.
The goal of this thesis is to de�ne and actually compute Lagrangian Floer cohmol-
ogy for (at least some kind of) toric symplectic manifolds (see also chapter 5.2 for a
short recap of these notion). In this context we discuss the meaning of group actions
on K. structures or more concretely, what is meant by T n-equivariance (in the sense
of K. structures). The theory allows (and we actually need) to speak of so called
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multisections s of the corresponding obstruction bundles and we then can ask for
transversality. As usually we then consider the zero level sets of these (transversal)
multisections. These thereof arising pertubed moduli spaces Ms will be the basis of
how we attend to de�ne the A∞-homomorphisms

ml : Bl(C[1])→ C[1] . (4.1)

For them there are at least two ways of how one can introduce them. In general
this is done on the chain level by using virtual chains (see section 3.4. and 3.5. of
[FOOO1] for details).
Since we aim to actually compute some of the maps ml (see e.g. section 5.5), for
our toric setup (see [FOOO2] for details) it is more useful to follow a slight di�erent
approach. Working on the cochain level, we aim to transport harmonic forms from
source (l copies of L) to target Lagrangians (1 copy of L).
In order to really see that the maps ml ful�ll the required A∞-relation (3.63), we
deduce that this "transportation" of forms can be composed in some way and we
even can write down an analogue of Stokes' theorem for it. This directly leads us
to chapter 5, where we try to apply these newly developed concepts in order to
describe the setup L ⊂M in an A∞-algebra fashion.

4.1 Good coordinate systems

At the beginning of the modern study of the geometry of topologial spaces one
wanted to get a local feeling for them. If possible this is done by covering them
with charts. Homeomorphisms to "nice" spaces (Rn, Cn, ...) allow to use well
established mathematics. Here we try to do something similar with our moduli
spaces although it is a bit less transparent. We start by clarifying the meaning of
neighborhoods and coordinate changes in the sense of K. structures.

De�nition 4.1

LetM be a compact metrizable space. A covering with Kuranishi charts is an
assignment of a quintuple called Kuranishi neighborhood (Vαp , Eαp ,Γαp , ψαp , sαp)
(αp ∈ I) for all p ∈M with the following properties:

(i) Vαp being a �nite dimensional smooth manifold;

(ii) Eαp being a �nite dimensional vector space over R;

(iii) Γαp being a �nite group with an e�ective group action on Vαp (that is⋂
op∈Vαp

{g ∈ Γαp | g.op = op} = {e}) and a linear representation on Eαp ;

(iv) sαp being a Γαp equivariant section of the vector bundle

Eαp × Vαp
prαp−→ Vαp (4.2)

for prαp being the Γαp equivariant projection onto the second factor;
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(v) s−1
αp (0)/Γαp is homeomorphic to im(ψαp) ⊂ M being a neighborhood of
p ∈M via

ψαp : s−1
αp (0)/Γαp →M ; (4.3)

We call sαp a Kuranishi map of the corresponding obstruction bundle

Eαp × Vαp −→ Vαp . (4.4)

One further assumes that the set of points

{op ∈ Vαp | sαp(op) = 0 ; ψαp([op]) = p} (4.5)

is �xed by Γαp .

Again reinterpreting the classical approach of how to get insight to the structure of
topological spaces, we now have to �nd a way to change between di�erent coordi-
nates. We show why one has to worry about the fact whether a coordinate system
shall be seen as a good one and what the meaning of 'good' in this context actually is.

De�nition 4.2

Assume Kuranishi charts (Vαp , Eαp ,Γαp , ψαp , sαp), (Vαq , Eαq ,Γαq , ψαq , sαq) onM
are given with q ∈ ψαp(s−1

αp (0)/Γαp).
Let further Vαp,αq be an Γαq invariant (Γαq .Vαp,αq = Vαp,αq) open neighborhood
of op (ful�lling (4.5)) in Vαq .

A coordinate change is given by a triple (
̂̂
φαp,αq , φ̂αp,αq , φαp,αq) if it ful�lls:

(i)
̂̂
φαp,αq being an injective group homomorphism Γαq → Γαp ;

(ii)

Eq × Vαp,αq
(φ̂αp,αq ,φαp,αq )
−−−−−−−−−→ Ep × Vαp (4.6)

being a
̂̂
φαp,αq equivariant embedding covering the smooth

̂̂
φαp,αq equivari-

ant embedding Vαp,αq
φαp,αq−−−−→ Vαp ;

(iii) the well de�ned restriction of
̂̂
φαp,αq to

(Γαq)oq → (Γαp)φαp,αq (oq), (4.7)

for (Γαq)oq being the stabilizer of oq ∈ Vαp,αq , is an isomorphism;

(iv) φαp,αq induces an injective map φ
αp,αq

: Vαp,αq/Γαq → Vαp/Γαp ;

(v) φ̂αp,αq ◦ sαq |Vαp,αq= sαp ◦ φαp,αq

(vi) ψαq |(s−1
αq (0)∩Vαp,αq )/Γαq

= ψαp ◦ φαp,αq |(s−1
αq (0)∩Vαp,αq )/Γαq
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A Kuranishi structure forM is then the allocation of a Kuranishi neighborhood
for all p ∈ M and appropriate coordinate changes for all q ∈ ψαp(s−1

αp (0)/Γαp)
ful�lling:

(i) The virtual dimension

vir.dimp(M) := dim Vαp − dim Eαp ≡ vir.dim (M) (4.8)

does not depend on p;

(ii) For r ∈ ψαq((Vαp,αq ∩ s−1
αq (0))/Γαq) one gets

φ
αp,αq

◦ φ
αq ,αr

= φ
αp,αr

; (4.9)

Remark 4.1. Let us illustrate point (iii) a bit more accurate. It is clear that we
have

γ ∈ (Γαq)oq ⊂ Γαq ⇒
̂̂
φαp,αq(γ) ∈ (Γαp)φαp,αq (oq) ⊂ Γαp (4.10)

for oq ∈ Vαp,αq since φαp,αq(oq) = φαp,αq(γ·oq) =
̂̂
φαp,αq(γ)·φαp,αq(oq). A similar

argumentation using the isomorphism property of (iii) and the injectivity of (iv)
provides us an alternative formulation of (iii):

(iii)' (γ·φαp,αq(Vαp,αq)) ∩ (φαp,αq(Vαp,αq)) 6= ∅ for γ ∈ Γαp (4.11a)

⇒ γ ∈ ̂̂φαp,αq(Γαq) (4.11b)

This fact follows easily by the following observation

(4.11a)⇒ ∃ x, y ∈ Vαp,αq ; γ ∈ Γαq
s.th. φαp,αq(x) = γ.φαp,αq(y)

⇒ [φαp,αq(x)] = [φαp,αq(y)] ∈ Vαp/Γαp .
(4.11c)

By the injectivity of φ
αp,αq

: Vαp,αq/Γαq → Vαp/Γαp we therefore can deduce

[x] = [y] that is x = β.y for β ∈ Γαq

⇒ φαp,αq(y) = γ−1.(φαp,αq(β.y)) =︸︷︷︸
(ii)

(γ−1 · ̂̂φαp,αq(β)).(φαp,αq(y))

⇒ γ−1 · ̂̂φαp,αq(β) ∈ (Γαp)φαp,αq (y) .

(4.11d)

Due to the isomorphism property (iii) one can �nd an group element g ∈ (Γαq)y

with
̂̂
φαp,αq(g) = γ−1 · ̂̂φαp,αq(β) and we thus conclude

γ =
̂̂
φαp,αq(β) · (̂̂φαp,αq(g))−1︸ ︷︷ ︸

∈ ̂̂φαp,αq (Γαq )

. (4.11e)
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After clarifying what is meant by K.- charts and K. coordinate changes, we aim
to clarify why "good" coordinate systems are necessary to be considered in this
context. The problem arises since we just required that vir.dim(M) is independent
of the underlying p ∈ M. So coordinate changes do not in general have to exist
since we do not exclude dimVαp 6= dimVαq for p 6= q.
We discuss a possibility of how the K. neighborhoods can be ordered in a clever
way, such that the coordinate changes exist at least in one direction. That such an
ordering can always be found is guaranteed by the proceeding lemma.

Lemma 4.1

The index set I of a space with Kuranishi structure carries a partial order < .
For αp, αq ∈ I with ψαp(s

−1
αp (0)/Γαp) ∩ ψαq(s−1

αq (0)/Γαq) 6= ∅ one either has

αp ≤ αq or αq ≤ αp .

In such a situation (wlog. αq ≤ αp) one can always �nd (Vαp,αq ,
̂̂
φαp,αq , φ̂αp,αq , φαp,αq)

satisfying the properties stated in De�nition (4.2). Remark that (4.9) then holds
for

ψαp(s
−1
αp (0)/Γαp) ∩ ψαq(s−1

αq (0)/Γαq) ∩ ψαr(s−1
αr (0)/Γαr) 6= ∅

with αr ≤ αp ≤ αp.
In addition one has

(i) ψ−1
αq (ψαp(s

−1
αp (0)/Γαp) ∩ ψαq(s−1

αq (0)/Γαq)) ⊂ Vαp,αq/Γαq ;

(ii)
⋃
αp∈I

ψαp(s
−1
αp (0)/Γαp) =M

A coordinate system (
̂̂
φαp,αq , φ̂αp,αq , φαp,αq) ful�lling these properties is speci�ed

to be a good coordinate system.

Proof : [FO]

We already remarked our goal, namely to equip the moduli space of pseudo-holomorphic
curves with a Kuranishi structure. In this context the evaluation map

ev = (ev1, ..., evl, ev0) (4.12)

fromMl+1(β) to the Lagrangian Lk+1 will play an important role in order to de�ne
the homomorphisms {ml}l≥0 for the A∞-algebra structure. Therefore we want to
�nd ways of how maps from spaces with K. structure into smooth manifolds can be
treated in a meaningful fashion.

De�nition 4.3

Assume for a space M with Kuranishi structure and for all p ∈ M one has
Γαp invariant, continous maps fαp mapping Vαp into a topological manifold M .
They are said to be strongly continous if one has

fαp ◦ φαp,αq = fαq (4.13)
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when restricting to Vαp,αq ⊂ Vαq .

A simply observation shows that one always can uniquely construct a continuous
map

f :M→M (4.14)

out of a family {fαp} of strongly continous maps. Remark that we have⋃
αp∈I

ψαp(s
−1
αp (0)/Γαp) =M . (4.15)

Then it is de�ned via

f(x) := (fαp ◦ π−1
αp ◦ ψ

−1
αp )(x) for x ∈ ψαp(s−1

αp (0)/Γαp) (4.16)

and παq being the projection Vαp → Vαp/Γαp . Due to the required invariance of fαp
it does not matter which representative of the equivalence class of the quotient space
Vαp/Γαp is chosen. Remark that f(x) is already continuous on ψαp(s

−1
αp (0)/Γαp) since

ψαp is a homeomorphism onto its image and Vαp/Γαp carries the quotient topology.
Because of (4.13) one has

(fαq ◦ π−1
αq ◦ ψ

−1
αq )(x) =

=(fαp ◦ φαp,αq ◦ π−1
αq ◦ ψ

−1
αq )(x) =︸︷︷︸

Def.(4.2) (iv)

=(fαp ◦ π−1
αp ◦ φαp,αq ◦ ψ

−1
αq )(x) =︸︷︷︸

Def.(4.2) (vi)

=(fαp ◦ π−1
αp ◦ ψ

−1
αp )(x)

(4.17)

This implies that f is well de�ned and continuous on the overlaps (wlog. αq ≤ αp)
for

x ∈ ψαp(s−1
αp (0)/Γαp) ∩ ψαq(s−1

αq (0)/Γαq) (4.18)

that is

ψ−1
αq (x) ∈ (s−1

αq (0) ∩ Vαp,αq)/Γαq and ψ−1
αp (x) ∈ s−1

αp (0)/Γαp . (4.19)

If a function f :M→ M arising in a way as described here we additionally call it
strongly continous.

De�nition 4.4

If the manifold M is smooth then strongly continuous maps f : M → M are
said to be weakly smooth respectively weakly submersive if the maps

fαp : Vαp →M (4.20)

are smooth respectively submersive for all p ∈M.
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Here one should be aware of the following fact. Assume two Kuranishi neighbor-
hoods for p, q ∈M are given with

x = ψαq([xαq ]) = ψαp([xαp ]) (4.21)

that is
x ∈ ψαq(s−1

αp (0)/Γαp) ∩ ψαq(s−1
αp (0)/Γαp) ⊂M . (4.22)

We can consider the di�erentials of the sections sαp , sαq of the obstruction bundle
at the point xαp respectively xαq , that is

dxαpsαp : TxαpVαp → (Eαp)xαp × Vαp ; dxαq sαq : TxαqVαq → (Eαq)xαq × Vαq . (4.23)

It would be nice to �nd a way of how both can be linked in some way. First consider
φαp,αq(Vαp,αq) as an embedded submanifold of Vαp . We abbreviate φαp,αq(Vαp,αq) sim-
ple as Vαp,αq if the meaning is clear, that it sits in Vαp as an embedded submanifold.
The restriction of dsαp to the normal bundle NVαp,αq = TVαp/TVαp,αq yields a map

d�bresαp : NVαp,αq → Eαp ×NVαp,αq . (4.24)

As usually the exponential map can be used to identify neighborhoods of Vαp,αq in

Vαp with neighborhoods of the zero section in the normal bundle. So we get a
̂̂
φαp,αq

equivariant bundle homomorphism

d�bresαp : NVαp,αq → Eαp × Vαp,αq . (4.25)

De�nition 4.5

A space M equiped with a Kuranishi structure has a tangent bundle (in the
sense of K. structures) if d�bresαp induces a bundle isomorphism between the Γαq
equivariant bundles over φαp,αq(Vαp,αq), namely

TVαp/Tφαp,αq(Vαp,αq)
∼= (4.26)

∼= Eαp × φαp,αq(Vαp,αq)/(φ̂αp,αq , φαp,αq)(Eαq × Vαp,αq) .

M is additionally called oriented (in the sense of K. structures) if for all p ∈M
the manifolds Vαp and the bundles Eαp × Vαp are oriented and the group action
of Γαp and the �ber derivative d�bresαp are preserving the orientation.

4.2 T n equivariant Kuranishi structures forMl+1(β)

According to Fukaya et al. there is a detailed de�nition of how to characterize
group actions G ↪→M in the sense of Kuranishi structures (see e.g. [FOOO1] and
[FOOO2]). There the authors prove that for �nite groups the K. structure can in
general be devolved to the quotient spaceM/G. Since we just consider the action
of the n-tori T n at a later stage of progress, we are content with a slightly simpli�ed
version of the general de�nition of group actions on K. structures (see e.g.[FOOO2]).
In the following we always assume that underlying space M is already equipped
with an K. structure and a T n action onM is given.
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De�nition 4.6

The Kuranishi structure of M is called T n equivariant if the following holds
for K. neighborhoods (Vαp , Eαp ,Γαp , ψαp , sαp) and the corresponding coordinate

changes (
̂̂
φαp,αq , φ̂αp,αq , φαp,αq) for all p, q ∈M:

(i) Vαp carries a T
n action commuting with the Γαp action;

(ii) the vector bundle Eαp × Vαp → Vαp is T
n equivariant;

(iii) sαp : Vαp → Eαp × Vαp is a T n equivariant section;

(iv) φ̂αp,αq , φαp,αq are T
n equivariant;

(v) ψαp : s−1
αp (0)/Γαp →M is T n equivariant;

Strongly continuous maps f : M → M are called T n equivariant if the corre-
sponding maps fαp : Vαp →M are T n equivariant for all p ∈M.

For condition (v) we remark that the T n action on s−1
αp (0)/Γαp is well de�ned since

sαp is T
n equivariant and the actions of T n and Γαp are assumed to commute with

each other.

A simple observations shows thatM/T n also carries a natural induced K. struc-
ture if one has the T n action to be free on each K. neighborhood. It can be derived
as follows for all p ∈M:
Take a K. chart (Vαp , Eαp ,Γαp , ψαp , sαp). Vαp/T

n is also a smooth manifold since T n

acts free on Vαp .
Due to the required T n equivariance of Eαp × Vαp → Vαp we are allowed to consider
the orbit bundle

(Eαp × Vαp)/T n → Vαp/T
n (4.27)

as a vector bundle with �nite dimensional real vector spaces

((Eαp × Vαp)/T n)[xp] for [xp] ∈ Vαp/T n (4.28)

as its �bers.
Γαp can just be taken to be the corresponding group acting on the vector bundle

(Eαp × Vαp)/T n → Vαp/T
n (4.29)

since we assumed that the group actions of T n and Γαp commute with each other.
Similarly the T n equivariance of the sections sαp allows to de�ne Kuranishi maps

sαp := πEαp ◦ sαp ◦ π
−1
Vαp

: Vαp/T
n → (Eαp × Vαp)/T n (4.30)

for πEαp , πVαp being the projection of Eαp×Vαp respectively Vαp to the corresponding
orbit space arising by the T n action.
ψαp can be projected to map ψαp between the orbit spaces

ψαp : (s −1
αp (0)/Γαp)/T

n →M/T n (4.31)
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since we assumed T n equivariance for ψαp .
In summary the devolved K. structure forM/T n is given by

(Vαp/T
n, Eαp/T

n,Γαp , ψαp , sαp) . (4.32)

The coordinate change for the K. structure ofM/T n is de�ned by

(
̂̂
φαp,αq :=

̂̂
φαp,αq , φ̂αp,αq := πEαp ◦ φ̂αp,αq ◦π

−1
Eαq

, φαp,αq := πVαp ◦φαp,αq ◦π
−1
Vαq

) . (4.33)

This assignment is well de�ned since we also required T n equivariance for φ̂αp,αq
and φαp,αq . It is not hard to check that this setting ful�lls the properties required
in De�nition 4.1 and De�nition 4.2. Since it is more or less a similar rewriting of
what is already be written down we omit this veri�cation here.

To come full circle at the end of this section we aim to state the important
Proposition that allows to apply the results of section 4.1 and 4.2 for the moduli
space of pseudo-holomorphic curves.

Proposition 4.1

Ml+1(β) carries a T n equivariant Kuranishi structure, is oriented in that sense
and the evaluation map at the 0th marked point ev0 : Ml+1(β) → L is T n

equivariant, weakly continuous and weakly submersive.

Proof : The general way of how equippingMk+1(β) with a K. structure can be found
in [FOOO1] section 7.1. The more explicit way, concerning the Tn equivariance,
is discussed in [FOOO2] Appendix 2.

4.3 Multisections for Kuranishi structures

This section's aim is to introduce the concept of multisections. That is de�ning a
set

s = {s′αp}αp (4.34)

of compatible multisections of the obstruction bundles arising in the context of
Kuranishi structures. The ′ sign shall beware of mixing them up with the sections sαp
of the obstruction bundle, which are can also be seen as (single valued) multisections.
Remark that these would be enough, and we thus could skip this section, if Γαp =
{e} that is the groups are trivial for all p ∈M.
The meaning of multisections is somehow clear, remains to clarify the compatible
requirement in this context. In order to do so, we start with li-multisections sliαp .
Such data consist of an open covering

⋃
i∈I
Ui = Vαp of Γαp invariant subsets Ui and

Γαp equivariant maps

sliαp,i : Ui → Sli(Eαp) := (Eli
αp/Sli)× Ui . (4.35)
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Here Sli denotes the symmetric group of order li! this means in Sli(Eαp) elements

(x1, ..., xli) ∼ (xσ(1), ..., xσ(li)) (4.36)

of Eαp × ...× Eαp︸ ︷︷ ︸
li

are identi�ed for σ ∈ Sli . From now on we always assume that

these li-multisections are liftable this means that the following diagram commutes

(Eαp × Ui)li

π
li
αq,i

��
Ui

s
li
αp,i

//

s̃
li
αp,i

=(s̃
li
αp,i,1

,...,s̃
li
αp,i,li

)

;;xxxxxxxxxxxxxxxxxxx
Sli(Eαp)

The components s̃liαp,i,k of the lift s̃
li
αp,i

are called branches of sliαp,i.

One de�nes an equivalence relation for li-/mj-multisections. An thereof arising
equivalence class is then simply called a multisection

s′αp := [sliαp,i] = [s
mj
αp,j

] (4.37)

So how is this equivalence relation be de�ned?
The required representation of Γαp on Eαp can be extended to E

limj
αp by embedding

El
αp −→ Elimj

αp

(x1, ..., xli) 7→ (x1, ..., x1︸ ︷︷ ︸
mj

, ..., xli , ..., xli︸ ︷︷ ︸
mj

) . (4.38)

One therefore naturally gets a Γαp equivariant map

ιlimj : Sli(Eαp) −→ Slimj(Eαp) . (4.39)

We say for sliαp,i, s
mj
αp,j

to be equivalent (sliαp,i ∼ s
mj
αp,j

) if

ιlimj ◦ s
li
αp,i

(x) = ιmj li ◦ s
mj
αp,j

(x) for all x ∈ Ui ∩ Uj, (4.40)

that is their images coincide in Slimj(Eαp) = Smj li(Eαp).
So far we de�ned multisections for each αp ∈ I and p ∈M. The next step is clearly
to enlarge them to the whole Kuranishi structure, that is to �nd how di�erent
sections s′αp , s

′
αq (p 6= q) can be considered as compatible. To do so we make use

of the isomorphism (4.26). This is possible when assuming thatM has a tangent
bundle (in the sense of K. structures). The stated isomorphism helps to slightly
modify the exponential map between the neighborhoods

Bε(NVαp,αqVαp) (4.41)
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(of φαp,αq(Vαp,αq) ⊂ Vαp as the zero section in NVαp,αqVαp) and

Uε(φαp,αq(Vαp,αq)) (4.42)

(of φαp,αq(Vαp,αq) ⊂ Vαp). Equation (4.26) provides an isomorphism

TVαp/Tφαp,αq(Vαp,αq)→ Eαp × φαp,αq(Vαp,αq)/(φ̂αp,αq , φαp,αq)(Eαq × Vαp,αq)
[ỹ] 7→ d�bresαp([ỹ]) mod φ̂αp,αq(Eαq)

(4.43)

and thus the implicit function justi�es the modi�cation of the exponential map.
This is done in a way such that one achieves

d�bresαp([ỹ]) ≡ sαp(y) mod (φ̂αp,αq(Eαq))y (4.44)

for
[ỹ] ∈ TVαp/Tφαp,αq(Vαp,αq) (4.45)

with
exp(ỹ) = y ∈ Uε(φαp,αq(Vαq)) . (4.46)

Then choose a representative (Ui, s
l
αq ,i) of s′αq with branches (s̃lαq ,i)k and de�ne a

new l-multisection s′αq ⊕ 1 by (Ui, (s
′
αq ,i ⊕ 1)l) via

(s′αq ,i ⊕ 1)l(y) = πlαq ,i ◦ ˜(s′αq ,i ⊕ 1)
l

(y) :=

=((s̃lαq ,i)1(φ−1
αp,αq ◦ pr(y))⊕ d�bresαp([ỹ]), ..., (s̃lαq ,i)l(φ

−1
αp,αq ◦ pr(y))⊕ d�bresαp([ỹ])) .

(4.47)

De�nition 4.7

Multisections s′αp and s′αq of Eαp × Vαp respectively Eαq × Vαq are said to be
compatible if

s′αp |Uε(φαp,αq (Vαp,αq ))≡ s′αq ⊕ 1 . (4.48)

A set s = {s′αp}αp∈I (for all p ∈ M) of compatible multisections is called a
multisection for a spaceM with Kuranishi structure.

4.4 Moving forms from source to target spaces

As the headline proposes we want to derive a method of how to transport (pull back
and then 'push forward') forms between Lagrangian submanifolds via the moduli
space. This section follows the ideas explored by Fukaya et al. in [FOOO2].
Later on we will work with evaluation maps out of our perturbed moduli spaces

ev = (ev1, ..., evl, ev0) :Mmain
l+1 (L, β)sβ → Ll+1. (4.49)

Here the perturbation ofMmain
l+1 (L, β) toMmain

l+1 (L, β)sβ (as the zero set of a transver-
sal multisection sβ) is necessary to actually have a smooth manifold structure on it.
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See chapter 5.3 for details. Relying on Proposition 4.1 we have our moduli space
Mmain

n+1 (L, β) equipped with a T n equivariant Kuranishi structure and the evalua-
tion map ev0 :Ml+1(β)→ L to be T n equivariant, strongly continuous and weakly
submersive. The meaning of 'source' and 'target' comes into play when we split up
(4.49) and de�ne

evs = (ev1, ..., evl) :Mmain
l+1 (L, β)sβ → Ll =: Ls

evt = ev0 :Mmain
l+1 (L, β)sβ → L =: Lt .

(4.50)

where the s/t stands for 'source' respectively 'target'. In this chapter we still try to
stay formal and thus use not closer speci�edM for some topological space equipped
with T n equivariant Kuranishi structure

((Vαp , Eαp ,Γαp , ψαp , sαp), (
̂̂
φαp,αq , φ̂αp,αq , φαp,αq)) . (4.51)

The coordinate system shall be a good one and the T n action is assumed to be free
on each coordinate neighborhood. To be able to choose multisections s = {s′αp}αp∈I
later we additionally assumeM to have a tangent bundle and to be oriented in the
sense of Kuranishi structures. With

fs/t :M→ Ls/t (4.52)

we denote not closer speci�ed strongly continuous, smooth maps into smooth, com-
pact, oriented manifolds Ls/t without boundary. As announced above we addition-
ally want ft to be weakly submersive. These maps are additionally considered to
be T n equivariant when we have Ls/t carrying a T n action. For Lt we additionally
require the action to be free and transitive.
The buildup of this section is twofold. First we try to 'push forward' (by integrating
along the �ber) smooth forms ξαp of compact support from Vαp to Lt. This 'push
forward' will be induced by ft.
The second part then clari�es the meaning of just using forms

ξαp ∈ Ωk
c (Vαp) (4.53)

that arise as pull backed (induced by fs) forms τ of the source Lagrangian Ls.
Since the forms ξαp depend on the chosen αp we have to relate them in some way
for di�erent αp ∈ I. We therefore make use of the concept of partition of unity for
Kuranishi structures.

First �x an αp ∈ I. We require T n to act freely on the K. neighborhoods and
therefore can rely to the considerations of section 4.2 that states thatM/T n carries
a naturally induced Kuranishi structure. Choose a multisection

ts = {ts′αp}αp∈I (4.54)

ofM/T n that is transversal to zero in the sense of K. structures. This means that
all corresponding branches

ts̃liαp,i,k : tUi︸︷︷︸
⊂ Vαp/T

n

→ (Eαp/T
n × tUi)

li (4.55)
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are transversal to zero. The lift of it, denoted by s = {s′αp}αp∈I , to the initial K.
structure can be seen as a T n equivariant multisection ofM transversal to zero.
Let s′αp be represented by (Ui, s

li
αp,i

). The implicit function theorem thus guarantees
that

(s̃liαp,i,k)
−1(0) ⊂ Ui (4.56)

is a smooth manifold for all k ∈ {1, ..., li}. We want to use the target map ft for
pushing forward forms. The smooth maps

ft,αp |(s̃liαp,i,k)−1(0)
: (s̃liαp,i,k)

−1(0)→ Lt (4.57)

shall therefore be submersive. This is true according to the following observation.
By Sard�s theorem we �nd at least one p0 ∈ (s̃liαp,i,k)

−1(0) such that ft,αp(p) is
submersive at the point p0. Since the T n action on Lt is assumed to be free and
transitive and further that ft,αp |... is T n equivariant, the property of f to be sub-

mersive assigns to all points of (s̃liαp,i,k)
−1(0).

Due to the regular value theorem f−1
t,αp0

(q0) for q0 ∈ Lt is a di�erential manifold of
dimension

dim (f−1
t,αp0

(q0)) = dim ((s̃liαp,i,k)
−1(0))− dim Lt =

= dim Vαp − dim Eαp − dim Lt =

= vir.dimM− dim Lt

(4.58)

or 0 for f−1
t,αp(q0) = ∅. Further we can pick coordinate neighborhoods Ux of p0 ∈

(s̃liαp,i,k)
−1(0), with coordinates (x1, ..., xm), and Vx of q0 = ft,αp(p0) ∈ Lt, with

coordinates (x1, ..., xn) (n ≤ m), in a way such that ft,αp can be written as a
projection

ft,αp(x1, ..., xn, xn+1, ..., xm) = (x1, ..., xn) . (4.59)

Further choose ξαp ∈ Ω∗c(Vαp). The index c suggests that we only use forms whose
restriction to each �ber (ft,αp |(s̃liαp,i,k)−1(0)

)−1(q) for q ∈ Lt is of compact support.

For a trivialization as in (4.59) ξαp |(s̃liαp,i,k)−1(0)
can locally be written as a linear

combination of elements of

{((ft,αp |(s̃liαp,i,k)−1(0)
)∗θx︸ ︷︷ ︸

=: θ̃αp,i,k

)fx(x1, ..., xn, xn+1, ..., xm)dxj1 ∧ ... ∧ dxjr} (4.60)

for ji ∈ {n + 1, ...,m}. Here θx ∈ Ωl(Lt) and fx ∈ C∞(Ux,R) of compact support
for each (x1, ..., xn) ∈ Vx ⊂ Lt �xed.
We want to map them to forms on Lt. This is done via integration along the �ber.
Here we only want to recap how this is done. We rely on the ideas of [BoTu] where
a detailed description of these methods can be found.
The name integration comes in since we integrate out the �ber components. This
means that we reduce the degree of ξαp |(s̃liαp,i,k)−1(0)

by the dimension of the �ber.
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It is locally de�ned as

Ω∗c(Ux)→ Ω∗−(m−n)(Vx)

θ̃αp,i,kfx(x1, ..., xn, xn+1, ..., xm)dxj1 ∧ ... ∧ dxjr 7→{
θx

∫
R(m−n)

fx(x1, ..., xn, xn+1, ..., xm)dxn+1...dxm , for r = m− n

0 , else
.

(4.61)

The local de�nition can be extended to a global degree −(m− n) map

(ft,αp)∗ : Ω∗c((s̃
li
αp,i,k

)−1(0))→ Ω∗(Lt) . (4.62)

Assume on the coordinate overlap near q0 ∈ Vx ∩ Vy ⊂ Lt one has coordinate
functions φx = (x1, ..., xn) respectively φy = (y1, ..., yn). For p0 ∈ f−1(q) the
�ber coordinates (xn+1, ..., xm) and (yn+1, ..., ym) on (s̃liαp,i,k)

−1(0) |Vx respectively

(s̃liαp,i,k)
−1(0) |Vy give rise to local descriptions for ft,αp :

ft,αp(Φx = (x1, ..., xn, xn+1,..., xm)) = (x1, ..., xn)

and

ft,αp(Φy = (y1, ..., yn, yn+1,..., ym)) = (y1, ..., yn)

(4.63)

We easily check that

( Φxy︸︷︷︸
=Φx◦Φ−1

y

)∗

θy(y1, ..., yn)

∫
R(m−n)

fy(y1, ..., yn, yn+1, ..., ym)dyn+1...dym

 =

=θy(x1, ..., xn)

∫
R(m−n)

fy(Φxy(y1, ..., yn, yn+1, ..., ym))Φ∗xydyn+1...Φ
∗
xydym =

=θy(x1, ..., xn)

∫
R(m−n)

fy(Φxy(y1, ..., yn, yn+1, ..., ym)) | det(Φxy) | dyn+1...dym =

=θx(x1, ..., xn)

∫
R(m−n)

fx(x1, ..., xn, xn+1, ..., xm)dxn+1...dxm

(4.64)

that proves that integration along the �ber is globally de�ned.

Lemma 4.2

The function (ft,αp)∗ (4.62) preserves the property of forms to be closed. Pre-
cisely speaking one has

(ft,αp)∗ ◦ d = d ◦ (ft,αp)∗ . (4.65)

The induced degree −(m− n) homomorphism

((ft,αp)∗)
∗ : H∗cv((s̃

li
αp,i,k

)−1(0))→ H∗(Lt) (4.66)
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is actually an isomorphism for H∗cv(· · ·) denoting the cohomology of the complex
of forms Ω∗cv(· · ·), that is forms whose restriction to each �ber has compact
support.

Proof : [BoTu]

The manifold Vαp is covered by the open sets {Ui | i ∈ I}. So we can use a partition
of unity {χ̃i | i ∈ I} subordinated to that covering in order to link the forms
Ωk
c ((s̃

li
αp,i,k

)−1(0)) for di�erent i. This yields a possibility to push forward forms

Ωk
c (Vαp)→ Ωk+dim Lt−vir.dimM(Lt) . (4.67)

In de�nition of Kuranishi charts 4.1 we required the group Γαp to be �nite (wlog.
|Γαp | = n). So the replacement

χ̃i(x) −→ χi(x) :=
χi(g1.x) + ...+ χi(gn.x)

n
for gl 6= gk ∈ Γαp (4.68)

provides a Γαp invariant partition of unity.

De�nition 4.8

The push forward of forms by maps ft : Vαp → Lt in the sense of Kuranishi
structures is de�ned as a degree (dim Lt − vir.dimM) map

(ft)∗ : Ω∗c(Vαp) −→ Ω∗(Lt)

ξαp 7→
1

#Γαp

∑
i∈I

1

li

li∑
k=1

(ft,αp)∗︸ ︷︷ ︸
(4.62)

(χi · ξαp |(s̃liαp,i,k)−1(0)
)

 .
(4.69)

In the literature (e.g. [FOOO2]) the function is often equivalently denoted as

(ft)∗ ≡ ((Vαp , Eαp ,Γαp , ψαp , sαp), sαp , ft,αp)∗ . (4.70)

Remark 4.2. For the de�nition above to be well-de�ned, the push forward of forms
may just depend on the chosen Kuranishi chart, the multisection and the actual
target map. Comparably to standard integration theory for manifolds, De�nition 4.8
is independent of the representative (Ui, s

li
αp,i

) (i ∈ I) of s′αp and the corresponding

partition of unity {χi | i ∈ I}:
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Proof : For another choice (Vj , s
mj
αp,j

) and {κj | j ∈ J} one observes

∑
i∈I

(
1
li

li∑
k=1

(ft,αp)∗(χi · ξαp |(s̃liαp,i,k)−1(0)
)

)
=︸︷︷︸

(4.61)

=
∑
i∈I

(
1
li

li∑
k=1

...

∫
...χi...

)
=︸︷︷︸∑

j∈J
κj=1

=
∑
i∈I

∑
j∈J

(
1
li

li∑
k=1

...

∫
...χiκj ...

)
=︸︷︷︸

supp (χiκj)

compact in Ui∩Vj

=
∑
j∈J

∑
i∈I

(
1
li

li∑
k=1

...

∫
...χiκj ...

)
=︸︷︷︸∑

i∈I
χi=1

∑
j∈J


1
li

li∑
k=1

1︸︷︷︸
= 1
mj

mj∑
k′=1

...

∫
...κj ...

 =

=
∑
j∈J

 1
li

li∑
k=1︸ ︷︷ ︸

=1

1
mj

mj∑
k′=1

(ft,αp)∗(κj · ξαp |(s̃mj
αp,j,k′

)−1(0)
)

 =

=
∑
j∈J

(
1
mj

mj∑
k=1

(ft,αp)∗(κj · ξαp |(s̃mj
αp,j,k′

)−1(0)
)

)
.

(4.71)

Remark 4.3. In the sense of Lemma 4.2 one has the following relation:

(I)︷ ︸︸ ︷
d ◦ ((Vαp , Eαp ,Γαp , ψαp , sαp), sαp , ft,αp)∗(ξαp) =

= (Vαp , ...)∗(d(ξαp))︸ ︷︷ ︸
(II)

± (∂Vαp , ...)∗(ξαp)︸ ︷︷ ︸
(III)

.
(4.72)

Proof : Due to presence of the partition of unity in (4.69) we can work locally. Ac-
cording to (4.61) the case (I) 6= 0 and (III) 6= 0 can not occur for elements of the
form

θ̃αp,i,kfx(x1, ..., xn, xn+1, ..., xm)dxj1 ∧ ... ∧ dxjr ; ji ∈ {n+ 1, ...,m} . (4.73)

Recall that forms of Ω∗cv(Ux) are build as a linear combination of these.
For forms of the type (4.73) one either has

(i) r = m−n⇒ (II) = 0 per de�nition in (4.61) and (I) = (III) due to Lemma
4.2,

or
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(ii) r = m− n− 1 ⇒ (I) = 0 by (4.61) and (II) = ±(III) since
(for xji ∈ {xn+1, ..., xm} pairwise di�erent)

(Vαp , ...)∗(d(θ̃αp,i,kfx(x1, ..., xn, xn+1, ..., xm)dxj1 ∧ ... ∧ dxjr)) =

=(dθx)
∫

R(m−n)

fx(...)dxj1 ...dxjr

︸ ︷︷ ︸
=0

+

+ (−1)deg θxθx
∫

R(m−n)

∂fx
∂xjr+1

(...)dxn+1...dxm =︸︷︷︸
Stokes� Thm.

=± (∂Vαp , ...)∗(θ̃αp,i,kfx(x1, ..., xn, xn+1, ..., xm)dxj1 ∧ ... ∧ dxjr),

(4.74)

or

(iii) (I) = (II) = (III) = 0 else for r 6= {m− n,m− n− 1}.

As stated above we want the ξαp ∈ Ωk
c (Vαp) to arise as a pulled back form from

Ls. The assumed strongly continuous, smooth and T n equivariant map

fs :M→ Ls (4.75)

is used to de�ne

ξαp := χαp(fαp,s)
∗τ (4.76)

for τ ∈ Ωk(Ls). The family {χαp} represents a partition of unity for Kuranishi
structures. One has to rethink the de�nition of a partition of unity, since we are
working over a collection of manifolds Vαp here. The smooth functions of compact
support

χαp ∈ C∞c (Vαp , [0, 1]) (αp ∈ I) (4.77)

are addidionally required to be Γαp equivariant. Analogously to standard require-
ment (

∑
i

χi = 1) there is an alike way of how the χαp sum up to 1. Here the

functions for di�erent indices αp are linked via the coordinate embedding

Vαp,αq
φαp,αq−−−−→ Vαp (4.78)

for αq ≤ αp. We do not want to go deeper here and explain how the actual build-
up of them is done. The interested reader shall be referred to the literature for
example [FOOO2]. Also only stating Lemma 16.6. of the same article simpli�es
the upcoming constructions in a way that we do not have to worry if such a 'nice'
partition actually exits.

Fact 4.1. For a given T n equivariant Kuranishi structure one always �nds a T n

invariant partition of unity in the sense of Kuranishi structures.

Proof : [FOOO2]



62 CHAPTER 4. FUNDAMENTALS OF KURANISHI STRUCTURES

Remark that ξαp in (4.76) is indeed of compact support (necessary for integrating
along the �ber) since we required this property for the functions χαp . The form ξαp
just depends on the chosen Kuranishi structure {(Vαp , Eαp ,Γαp , ψαp , sαp)} for M,
its subordinated partition of unity χαp and the source map fs. We even can get rid
of the dependency on the partition of unity when de�ning the transport of forms
from Ls to Lt via:

Ωk(Ls) −→ Ωk+dim Lt−vir.dimM(Lt)

(M, s, fs,t)∗(τ) ≡ ({(Vαp , Eαp ,Γαp , ψαp , sαp)}, s, fs,t)∗(τ) :=

=
∑
αp

((Vαp , Eαp ,Γαp , ψαp , sαp), sαp , ft,αp)∗(χαp(fαp,s)
∗τ).

(4.79)

The independence of the actual chosen partition {χαp} is proven in a similar way as
we presented in (4.71). We do not implement this calculation here, since we would
need the actual way how the functions χαp sum up to 1 for di�erent indices αp. As
above a proof can be found in [FOOO2].

Remark 4.4. The same argumentation as in Remark 4.3 devolves the transport of
forms in (4.79) and one thus gets the following analogon Stokes� theorem:

d((M, s, fs,t)∗(τ)) =

=(M, s, fs,t)∗(dτ)± (∂M, s, fs,t)∗(τ).
(4.80)

Here the Kuranishi structure for ∂M is naturally induced by the K. structure ofM.
See Appendix A1. of [FOOO1] for details.

Composition of transport/ Gluing at boundary marked points:

In Proposition 5.4 we see that a union of �ber products of di�erent moduli spaces
of the form

Mk1+1(β1)ev0 ×eviMk2+1(β2) :=

{p = (p1, p2) ∈Mk1+1(β1)×Mk2+1(β2) | ev0(p1) = evi(p2)}.
(4.81)

arise as the boundary of

Mk+1(β) (4.82)

for k1 + k2 = k and β1 + β2 = β.
This fact is related to the transport of forms via the question whether construction
(4.79) allows to be composed in some way. We assume the following situation (r
stands for 'root'; s, t as above for 'source' and 'target'):

Lr Ls Lt

Mrs

evrs

77ooooooooooooo
evr

ggOOOOOOOOOOOOO
Mst

evt

77ppppppppppppp
evst

ggNNNNNNNNNNNNN
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Remark that we replace the general previously used maps f by the more speci�c
notion of the evaluation map ev. If one wants to compose the transportation of
forms, we need to require that it already exists for both sides of the diagram above.
By assumption the T n action on Ls and Lt is free and transitive. Further, since evrs
is required to be weakly submersive by assumption, the �ber product

Mrt :=Mrs evrs ×evstMst (4.83)

carries a Kuranishi structure. Things get much simpli�ed if we additionally require
evst to be weakly submersive. As described in [FOOO1], we actually would not need
this further speci�cation here. Nevertheless we require it here in order to not get
too technical.
The Kuranishi neighborhood (Vαp , Eαp ,Γαp , ψαp , sαp) forMrt is de�ned by:

• Vαp=(p1,p2)
:= {(x1, x2) ∈ Vαp1 × Vαp2 | evrs,αp1 (x1) = evst,αp2 (x2) ∈ Ls}

(We need the weak submersion property for Vαp to be a manifold.)

• Eαp := Eαp1 × Eαp2
• Γαp := Γαp1 × Γαp2

(Recall that De�nition 4.3 of strongly continuous maps implies that evrs,αp1
and evst,αp2 are Γαp1 respectively Γαp2 invariant.)

• sαp := sαp1 ⊕ sαp2
• ψαp := ψαp1 ⊕ ψαp2 : s−1

αp1
(0)/Γαp1 × s

−1
αp1

(0)/Γαp1 →Mrt

Similarly a coordinate system is constructed via the direct sum of the given ones.
Now one can check (see Appendix A1. of [FOOO1]), that this data de�nes a Kuran-
ishi structure, with good coordinate system, for Mrt. Since all appearing moduli
spaces are equipped with Kuranishi structure, we are allowed to state how trans-
ports of forms can be composed:

Lemma 4.3 (Composition of transports)

The composition of transports of forms give rise to the following commutative
diagram

Ω...(Lr)

(Mrt,srt,evrt,r,evrt,t)∗

44
(Mrs,srs,evr,evrs)∗ // Ω...(Ls)

(Mst,sst,evst,evt)∗ // Ω...(Lt)

.

Proof : [FOOO2]
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Chapter 5

Lagrangian Floer Cohomology for

Torus Fibers

Symplectic manifolds that we are examining in this text are further speci�ed to be
compact toric. Due to Delzant this kind can be classi�ed via some polytopial data.
Our aim is to explore the behavior of torus �bers arising in this context. For this
we assume the reader is already familiar somehow with toric (symplectic) geometry
of manifolds.
First we shortly recap some important aspects (moment maps, polytopes...) of toric
symplectic geometry and try to illustrate concepts with the help of some examples.
For not loosing the relation to our main task, the chapter is tried to be build up
in regard to the construction of an A∞-algebra out of this toric setup. Therefor
our focus lies on relevant examples for this context. We consider T 2 actions on 4
dimensional symplectic manifolds namely S2 × S2, CP 2 and so on.
The Lagrangian submanifolds on which we aim to attach pseudo-holomorphic curves
now arise as level sets of the moment map for interior points of the moment polytope.
After more or less just stating necessary facts about the nature of moduli spaces
M we try to incorporate the concepts (perturbation of M by using multisections
etc.) of chapter 4 into this toric setup. It will lead us to de�ne an A∞-algebra
structure by mainly using the idea of transporting forms (4.79) for the de�nition of
the homomorphisms mk.
Actually we are able to fully calculate (at least for Fano toric manifolds) the de-
scribed potential function PO, arising in the context of weak Maurer-Cartan solu-
tions. After these technicalities (especially analyzing the appearing disc and sphere
components) we are then able to talk of Lagrangian Floer Cohomology for toric
symplectic manifolds. It will directly lead us to chapter 7 where we try to apply
this developed theory. By examining derivatives of the already calculated poten-
tial function we are able to actually compute the Lagrangian Floer Cohomology
and then can face concrete problems ((non-)displaceability questions) of symplectic
topology.

65
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5.1 Recollections from Toric Geometry

The section�s purpose lies more on clarifying notations and stating the main theo-
rems necessary for upcoming constructions. For a general introduction to the topic
the reader shall be referred to e.g. [McSa] or [Si]. The book [Au] can be seen as
the standard textbook about the theory of T n actions including further supplemen-
tary material like Morse theoretic applications. These three references are the main
source on which this section is based. More about the algebrao-geometric view on
polytopes and toric varieties can be found in [F].

For a given symplectic manifold (M2n, ω) and the (commutative) Lie group
Tm = S1 × ...× S1︸ ︷︷ ︸

m

we consider smooth, symplectic actions

Tm → Symp(M,ω)

g 7→ ψg .
(5.1)

Such actions are further speci�ed to be hamiltonian if there is (smooth) moment
map

µ : M → t∗ = LA(Tm)∗ ∼= (Rm)∗ ∼= Rm ∼= LA(Tm) = t . (5.2)

For µ the following properties are required:

(i) For X ∈ t

µX : M → R
p 7→ 〈µ(p), X〉

(5.3)

is a hamiltonian function for the fundamental vector �eld

d

dt
|t=0 ψexp(tX) =: X# ∈ Γ(TM) (5.4)

that is
X#xω = dµX (5.5)

(ii)
µ ◦ ψg = µ (5.6)

De�nition 5.1

The data (M2n, ω, T n, µ) describe a symplectic toric manifold if one has:

(i) (M2n, ω) a compact and connected symplectic manifold

(ii) T n is acting e�ectively (i.e.
⋂
p∈M
{g ∈ T n | ψg(p) = p} = {e})

on M2n ( ! 2 · dimT n = dimM2n ! )

(iii) µ being the corresponding moment map of the hamiltonian T n action
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We remark that possible moment maps in our case are unique up to a constant
c ∈ t∗ ∼= Rn. For moment maps µ1, µ2 we get

µX1 (·)− µX2 (·) = c(X, ·) : M → R (5.7)

for a locally constant (due to (5.5)) and since M is assumed to be connected a
globally constant function

c(X, ·) : M → t∗

p 7→ c(X).
(5.8)

This implies 〈µ1(·)− µ2(·), X〉 = c(X) meaning

µ1(·)− µ2(·) = c ∈ t∗ (5.9)

Classi�cation via Delzant polytopes:

Delzant polytopes are described by the intersection of N half-spaces of dimension
n in Rn:

∆n,N
λ1,...,λN

≡ ∆ := {u ∈ (Rn)∗ | 〈u, vi〉 ≥ λi}. (5.10)

Here the vectors

vi ∈ (Zn)prim. := {vi ∈ Zn | @ w ∈ Zn, | k︸︷︷︸
∈Z

| > 1 with vi = kw} ⊂ Rn (5.11)

are the primitive inward-pointing normal vectors ∈ Rn ∼= t.
Delzant polytopes have the properties that each vertex p ∈ ∆ adjoin to n vertices
(simple), the edges are of the form (rational)

p+ tui; t ∈ R+
0 , ui ∈ Zn (5.12)

and the u1, ..., un form an integral basis of Zn (smooth). Delzant polytopes suit to
classify toric symplectic manifolds as follows:

Theorem 5.1

One has the following one-to-one correspondence:

{compact symplectic toric manifolds} 1:1↔{Delzant polytopes}

(M2n, ω, T n, µ)
[Ati]→ µ(M2n) = ∆n,N

λ1,...,λN

(5.13)

with im(µ) =conv {µ(x) | x ∈ M, ψg(x) = x, ∀g ∈ T n} and µ−
1
(u) being

connected or empty for u ∈ ∆.
Vice versa one has

(M∆, ω∆, T
n, µ)

[Del]← ∆n,N
λ1,...,λN

(5.14)

meaning that the corresponding toric manifold (M∆, ω∆, T
n, µ) is unique up to

T n equivariant symplectomorphisms.



68CHAPTER 5. LAGRANGIAN FLOER COHOMOLOGY FOR TORUS FIBERS

We aim to illustrate these concepts on the basis of some examples that will further
be important later when we aim to compute Lagrangian Floer Cohomology.

Examples of toric symplectic manifolds and moment polytopes:

a) T 2 ↪→ S2
a × S2

b ; for S
2
r := {x ∈ R3 | ‖x‖ = r}:

The T 2 = S1×S1 action on (S2
a ×S2

b , ω = dθ1 ∧ dh1⊕ dθ2 ∧ dh2) is locally given
by

(eiφ1 , eiφ2).(
√
a2 − h2

1 · eiθ1 , h1,
√
b2 − h2

2 · eiθ2 , h2) =

=(
√
a2 − h2

1 · ei(φ1+θ1), h1,
√
b2 − h2

2 · ei(φ2+θ2), h2) .
(5.15)

This setup can be seen as a toric symplectic manifold with moment map

µ(
√
a2 − h2

1 · eiθ1 , h1,
√
b2 − h2

2 · eiθ2 , h2) = (h1 + a, h2 + b) (5.16)

since for i = 1, 2 one has

dµXi=ei = d(〈µ(p), Xi〉) = dhi =
∂

∂θi
xω

loc.
= X#

i xω (5.17)

and

µ(
√
a2 − h2

1 · ei(φ1+θ1), h1,
√
b2 − h2

2 · ei(φ2+θ2), h2) =

=µ(
√
a2 − h2

1 · eiθ1 , h1,
√
b2 − h2

2 · eiθ2 , h2) .
(5.18)

The �xed points of this action (0,−a, 0,−b), (0, a, 0,−b), (0,−a, 0, b), (0, a, 0, b) get
mapped by µ to (0, 0), (2a, 0), (0, 2b) respectively (2a, 2b).
Therefore the moment polytope (Fig. 5.1), given by their convex hull, is described
by

∆2,4
λ1,2=0,λ3=−2a,λ4=−2b = {u ∈ R2 | 〈u, e1〉, 〈u, e2〉 ≥ 0; 〈u,−e1〉 ≥ −2a; 〈u,−e2〉 ≥ −2b}

(5.19)

b) T 2 ↪→ CP 2:

Similarly to example a) the complex projective space CP 2 can be seen as a toric
symplectic manifold. To �nd the momentum mapping and its image, the Delzant
polytope, we �rst consider the action of T 2 on C3 given by

(eiφ1 , eiφ2).(z0, z1, z2) = (z0, e
iφ1z1, e

iφ2z2). (5.20)

In this case for i = 1, 2 we use the relations

d(µi) = dµXi = X#
i xω

loc.
=

∂

∂θi
x(

2∑
l=0

2rldθl ∧ drl) = 2ridri = dr2
i . (5.21)
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Figure 5.1: moment polytope for T 2 ↪→ S2
a × S2

b

So a possible choice for the moment map µ̃ would be

µ̃ : C3 → R2

(z0, z1, z2) 7→ (|z1|2, |z2|2) .
(5.22)

In fact the level sets of µ̃ are invariant under the torus action so µ̃ is a moment
map. When considering the sphere SC = {(z0, z1, z2) | |z0|2 + |z1|2 + |z2|2 = 1} ⊂ C3

one has
CP 2 ∼= SC/U(1) . (5.23)

In this way the hamiltonian T n action can be assigned to (CP 2, ωCP 2) and then is
of the form

(eiφ1 , eiφ2).[z0, z1, z2] = [z0, e
iφ1z1, e

iφ2z2]. (5.24)

Remark that ωCP 2 denotes the Fubini-Study form. The action is hamiltonian with
a moment map given by

µ : CP 2 → R2

(z0, z1, z2) 7→
(

|z1|2

|z0|2 + |z1|2 + |z2|2
,

|z2|2

|z0|2 + |z1|2 + |z2|2

)
(5.25)

since µ([z0, z1, z2]) = µ([z0, e
iφ1z1, e

iφ2z2]).
Of course the argumentation here seems to be a bit sloppy. For deducing the moment
map for CP 2 in a precise manner one regards

CP n = S2n+1/S1 = µ−1
0 (1)/S1 (5.26)

as a reduced space. The form (5.25) is then obtained by symplectic reduction (see
e.g. [MarWei]) of

(Cn+1, ω0, S
1, µ0) (5.27)

for an action of the form

t.(z0, ..., zn) = (eitz0, ..., e
itzn) (5.28)

inducing a moment map
µ0 = |z0|2 + ...+ |zn|2 (5.29)
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that explains the additional factor in the denominator of (5.25).
The T n action (5.24) is e�ective and thus CP 2 can be seen as a toric symplectic
manifold. The �xed points of this action are [z, 0, 0], [0, z, 0], [0, 0, z] for z ∈ C∗.
According to Theorem 5.1 the moment polytope (Fig. 5.2) is given by the convex
hull of

µ([z, 0, 0]) = (0, 0)

µ([0, z, 0]) = (1, 0)

µ([0, 0, z]) = (0, 1)

(5.30)

that is in the sense of Delzant given by

∆2,3
λ1=0,λ2=0,λ3=−1 = {u ∈ R2 | 〈u, e1〉, 〈u, e2〉 ≥ 0; 〈u,−e1 − e2〉 ≥ −1} (5.31)

Figure 5.2: moment polytope for T 2 ↪→ CP 2

c) T 2 ↪→ CP 2
µv≤ε (Blow up/ Symplectic cut of CP 2 around �xed points):

Symplectic cutting is a quite general method of constructing new symplectic
manifolds out of given ones. Performing this operation around a point (in our case
a �xed point of the torus action), can be seen as the analogue of blowing up mani-
folds in the symplectic category.
Following the ideas of [Le] we are able to understand how symplectic cutting of a
toric symplectic manifold (M2n, ω, T n, µ) alters its moment polytope. We shortly
recap the stated construction performed around a point p0 ∈M . According to Dar-
boux�s theorem we can �nd an open neighborhood Op(p0) of p0 symplectomorphic
to Op(0) in Cn equipped with standard symplectic structure ω0. This means we
can locally think of (M2n, ω) as (Cn, ω0).
The thereof constructible manifold

(Cn × C1, ω0 ⊕
i

2
(dw ∧ dw)) (5.32)

can be equipped with a T 1 = S1 action (with Lie algebra s) via

(z1, ..., zn, w) 7→ (eiθz1, ..., e
iθzn, e

iθw) . (5.33)
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As above in example b) such an action induces a moment map of the form

µ̃(z, w) = µ(z) + |w|2 = |z1|2 + ...+ |zn|2 + |w|2 . (5.34)

Now pick ε ∈ R ∼= s∗ being regular value of µ. This property is guaranteed when
requiring that S1 is acting freely on µ−1(ε). A free S1 action means that for all
p ∈ µ−1(ε) their stabilizer {g ∈ S1 | ψg(p) = p} is trivial {e} and with (5.4) this
implies that dpµ is surjective and thus p regular. A level set {µ = ε} just consisting
of regular points is equivalent to saying that ε is a regular value of µ.
Level sets {µ̃ = ε} ⊂ Cn × C1 for such an ε are given by the disjoint union

{(z, w) | µ(z) < ε,w = eiφ(ε− µ(z))1/2} t {(z, w) | µ(z) = ε, w = 0} (5.35)

and are therefore di�eomorphic to

{z ∈ Cn | µ(z) < ε}︸ ︷︷ ︸
=:Mµ<ε

×S1 t µ−1(ε) . (5.36)

In general a symplectic cut can be performed for arbitrary symplectic manifolds
equipped with a hamiltonian S1 action and moment map µ. It is de�ned as

Mµ≤ε := {µ̃ = ε}/S1 = Mµ<ε t µ−1(ε)/S1 . (5.37)

As already announced above this can be seen as the symplectic blow up at p since
we can embedded Mµ<ε in Mµ≤ε. The complement of the image is isomorphic to
the collapsed boundary µ−1(ε)/S1.
Due to Lerman [Le] and the fact (5.37)Mµ≤ε carries a canonical symplectic structure
ωε satisfying

ωε = ω (5.38)

when restricting it to Mµ<ε ⊂ (M,ω).
The requirement above (ε regular value respectively S1 acting freely on µ−1(ε)) was
necessary to apply the theorem of Marsden-Weinstein ([MarWei]) that guarantees
that µ−1(ε)/S1 carries the structure of a symplectic manifold.

So let us clarify how this construction �ts into the concept of toric symplectic
manifolds, namely how the moment polytope of M gets altered when we perform a
symplectic cut around a �xed point p0.
For a given toric symplectic manifold M2n with moment map µ, we consider the
S1 action of {exp(tv)} ⊂ T n induced by an inward pointing normal vector v ∈ t of
the corresponding Delzant polytope (5.10) of M . According to property (5.5) this
action can also be considered to be hamiltonian with induced moment map

µv(·) = 〈µ(·), v〉 . (5.39)

The symplectic cut
Mµ≤ε = Mµv<ε t µ−1

v (ε)/S1 (5.40)

can now also be seen as toric symplectic since

T n.Mµv<ε = Mµv<ε and T n.µ−1
v (ε) = µ−1

v (ε) . (5.41)
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Further by the de�nition of how S1 acts we know that this action commutes with
the underlying T n action. The moment polytope for Mµ≤ε is therefore described by

∆n,N+1
λ1,...,λN+1

=

=im(µ)︷ ︸︸ ︷
∆n,N
λ1,...,λN

∩{u ∈ (Rn)∗ | 〈u, v〉 ≤ ε}
= {u ∈ (Rn)∗ | 〈u, vi〉 ≥ λi, 〈u, v〉 ≤ ε}.

(5.42)

This means with Delzant�s classi�cation theorem (Theorem 5.1) that we have a
correspondence between 'induced' symplectic cuts and parting polytopes by hyper-
planes. These considerations yield that for v = e2 the moment polytope (Fig. 5.3)
of

T 2 ↪→ CP 2
µv=e2≤ε (5.43)

around the �x point p0 = [0, 0, z] (z ∈ C∗) is described by

∆2,4
λ1,2=0,λ3=−1,λ4=−ε = {u ∈ R2 | 〈u, ei〉 ≥ 0; 〈u,−e1 − e2〉 ≥ −1; 〈u,−e2〉 ≥ −ε} .

(5.44)

Figure 5.3: moment polytope for T 2 ↪→ CP 2
µv≤ε

d) T 2 ↪→ Hirzebruch surface (Hk, ω0|Hk) ⊂ (CP 1 × CP 2, ω0 = ωCP 1 ⊕ ωCP 2):

Extending the ideas of example (b) we �rst try to �nd the moment map for the
e�ective T 2 action

(eiφ1 , eiφ2).([a, b], [x, y, z]) = ([eiφ1a, b], [ei·k·φ1x, y, eiφ2z]) (5.45)

for k ∈ N0 �xed. When considering the torus action separately for CP 1 and CP 2

we get the moment maps

µ1([a, b]) =

(
|a|2

|a|2 + |b|2
, 0

)
(5.46)

respectively

µ2([x, y, z]) =

(
k · |x|2

|x|2 + |y|2 + |z|2
,

|z|2

|x|2 + |y|2 + |z|2

)
. (5.47)
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The �rst case is done similarly like in example b) and for the action on CP 2 we
remark that now (5.21) is of the form

dµXx2 = X#
x xω

loc.
= (k · ∂

∂θx
)xω = k · dr2

x (5.48)

which justi�es the factor k in the �rst component of (5.47).
For the diagonal action T 2 ↪→ CP 1 ×CP 2 given by (5.45) we get the moment map

µ([a, b], [x, y, z]) = µ1 + µ2 =

(
|a|2

|a|2 + |b|2
+ k · |x|2

|x|2 + |y|2 + |z|2
,

|z|2

|x|2 + |y|2 + |z|2

)
(5.49)

which is clearly invariant under the T 2 action.
Here we can simply take the sum of the individual moment maps µ1, µ2 since ωHk
is declared by a (restriction of a) direct sum.
Now consider the subset

Hk := {([a, b], [x, y, z]) ∈ CP 1 ×CP 2 | F ([a, b], [x, y, z]) := aky − bkx = 0} . (5.50)

Remark that F is globally de�ned since

F ([λa, λb], [κx, κy, κz]) = F ([a, b], [x, y, z]) for λ, κ ∈ C . (5.51)

The inverse function theorem states that zero level set of the homogeneous polyno-
mial F is a complex submanifold of dimension dimC = 2. It is called the Hirzebruch
surface Hk. As CP 1 × CP 2 is Kähler Hk is in particular a symplectic manifold.
By the de�nition of the torus action

(eiφ1a)ky − bk(eik·φ1x) = eik·φ1(aky − bkx) (5.52)

we have F (T n.Hk) = 0. This invariance of the level sets {F = 0} allows to restrict
the above considered action to Hk with moment map µ = (5.49). The setup can
thus be seen as a toric symplectic manifold (Hk, ω0|Hk , T 2, µ). The convex hull of
the image of the �xed points (remark ([0, z], [w, 0, 0]), ([z, 0], [0, w, 0]) /∈ Hk)

([0, z], [0, 0, w])
µ→ (0, 1)

([0, z], [0, w, 0])
µ→ (0, 0)

([z, 0], [0, 0, w])
µ→ (1, 1)

([z, 0], [w, 0, 0])
µ→ (k + 1, 0)

(5.53)

gives rise to a moment polytope (Fig. 5.4) of the form

∆2,4
λ1,2=0,λ3=−1,λ4=−(1+1/k) = {u ∈ R2 | 〈u, e1〉,〈u, e2〉 ≥ 0; 〈u,−e2〉 ≥ −1;

〈u,−e1 − ke2〉 ≥ −(k + 1)} .
(5.54)

e) T 2 ↪→ deg. Hirzebruch surface (Hk(α), ωk,α|Hk(α) = (ωkαCP 1 ⊕ ω(1−α)

CP 2 )|Hk(α)):
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Figure 5.4: moment polytope for T 2 ↪→ Hk

We aim to get a bit more general perspective on the discussion above. That is
observing the case for a family of symplectic structures

{ωkαCP 1 := kα · ωCP 2}k∈N,α∈(0,1) ; (5.55)

{ω(1−α)

CP 2 := (1− α) · ωCP 2}α∈(0,1) (5.56)

on CP 1 × CP 2.
Remark that multiplication with a constant ∈ R does not destroy the property of
being a symplectic form. In the following we denote this speci�c toric manifold
(arising like in example d) as the complex submanifold F−1(0) and with T 2 acting
as in (5.45)) by Hk(α).
For moment maps the underlying symplectic structure is involved via

dµX = X#xω, (5.57)

so µ of example d) gets generalized to

µkα([a, b], [x, y, z]) =

(
k · α · |a|2

|a|2 + |b|2
+ (1− α) · k · |x|2

|x|2 + |y|2 + |z|2
,

(1− α) · |z|2

|x|2 + |y|2 + |z|2

)
. (5.58)

Again considering the image of the �xed points

([0, z], [0, 0, w])
µkα→ (0, (1− α))

([0, z], [0, w, 0])
µkα→ (0, 0)

([z, 0], [0, 0, w])
µkα→ (kα, (1− α))

([z, 0], [w, 0, 0])
µkα→ (k, 0)

(5.59)

that span a polytope (Fig. 5.5) described by

∆2,4
λ1,2=0,λ3=α−1,λ4=−k = {(u1, u2) ∈ R2 | ui ≥ 0;u2 ≤ 1− α;u1 + ku2 ≤ k} . (5.60)
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Figure 5.5: moment polytope for Hk(α)

Conclusion of the examples:

When comparing the moment polytopes of the sphere product S2
a × S2

b (5.19)
for a = b = 1/2 and of the Hirzebruch surface Hk (5.54) for k = 0 one sees that
they coincide. Remark that in the literature one normally gets a = b = 1 when
scaling both symplectic forms consistently. For later purposes (when calculating the
potential function in section 6.2.2) the way we describe things here is more helpful
and so we just leave results as they are written in a) and d).
The same holds for the polytopes of the symplectic cut (one point blow up around
[0, 0, 1]) CP 2

µv=e2≤ε (5.44) and of the degenerated Hirzebruch surface Hk(α) (5.60)
for 1− α = ε and k = 1.
According to Theorem 5.1 we deduce that these respective manifolds are symplec-
tomorphic meaning

S2
1/2 × S2

1/2 ∼D H0

CP 2
µv=e2≤1−α ∼D H1(α)

(5.61)

that is they are equivalent in the sense of Delzant.

Lagrangian Torus Fibers arising as preimages of interior points:

In order to detect torus �bers of the momentum �bration µ : M2n → ∆n we
�rst clarify that preimages µ−1(p) of regular values p ∈ ∆ are indeed submanifolds
of Mn.
It can be proven (see e.g. [Au]) that the dimension of the facet of ∆ to which p
belongs coincide with the rank of

dxµ : TxM → t∗ for all x ∈ µ−1(p) . (5.62)

This means in particular that µ is a submersion for all x with µ(x) ∈ ∆̊. Therefore
µ−1(p) is a compact (M is assumed to be compact), connected (Theorem 5.1) man-
ifold of dimension 2n− n = n for all p ∈ ∆̊.

We want these �bers to be a torus. In order to apply the Arnold-Liouville
theorem (Theorem 5.2) we have to check that C∞(M,R) maps of the form

µX = 〈µ(·), X〉 (5.63)
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commute with respect to the Poisson bracket, that is

{µX , µY } ≡ 0 . (5.64)

We remark that for X, Y ∈ t and [., .] denoting the Lie bracket of t respectively
Γ(TM) the identity

[X, Y ]# = [X#, Y #] (5.65)

holds per de�nition of X#, being the vector �eld generated by ψexp(tX).
Recall the following identity

d(µ[X,Y ]) = [X, Y ]#xω = [X#, Y #]xω =︸︷︷︸
(∗)

d({µX , µY }) (5.66)

The last equality (∗) holds when we regard M as a Poisson manifold via

{f, g} := ω(Xf , Yg) . (5.67)

for f, g ∈ C∞(M,R) and Xf , Yg ∈ Γ(TM) their corresponding hamiltonian vector
�eld. For moment maps this de�nition is thus written as

{µX , µY } := ω(X#, Y #) . (5.68)

Then for the vector �eld [X#, Y #] we have

[X#, Y #]xω = (
d

dt
|t=0 (φtX#)∗Y #)xω =

=
d

dt
|t=0 d(µY ◦ φ−t

X#) =

= −d(dµY (X#)) = −d(ω(Y #, X#)) =

= d{µX , µY }

(5.69)

and therefore [X#, Y #] is hamiltonian for the function {µX , µY }. This proves equal-
ity (∗) of (5.66).
Since T n is commutative we have [X, Y ] = 0 for all X, Y and so {µX , µY } is a locally
and since we assume M to be connected a globally constant function C∞(M,R).
According to the considerations above about the rank of dxµ we know that µX has
at least one critical point and thus

{µX , µY } ≡ 0 . (5.70)

Theorem 5.2 (Arnold-Liouville)

Assume a smooth function
f : M → Rn (5.71)

on a symplectic manifold (M2n, ω) with commuting component functions fi

{fi, fj} = 0 (5.72)

is given. Then compact connected manifolds of dimension n that arise as level
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sets
{f = const.} (5.73)

are di�eomorphic to T n.

Proof : [A]

The above theorem can be applied in our case. For the standard basis (Xi) of Rn ∼= t

we have µ = (µ1 = µX1 , ..., µn = µXn) with

{µi, µj} = 0 . (5.74)

Therefore µ−1(p) is di�eomorphic to T n (and therefore orientable) for all p ∈ ∆̊.

We �nally check that the torus �bers over interior points of ∆ are indeed La-
grangian tori. For all x in the level sets µ−1(p) one has

ker(ω |µ−1(p))x = Txµ
−1(p) ∩ (Txµ

−1(p))ω =

= ker dxµ ∩ (ker dxµ)ω
(5.75)

for the tangent map dµ : TM → t∗. The stated assertion then follows by counting
dimensions and the fact that dxµ is surjective. Precisely speaking we further have

ker dxµ = (Tx(T
n.x))ω (5.76)

for

T n.x := {ψg(x) | g ∈ T n} ⊂M (5.77)

denoting the orbit through x. This is true since the vanishing of dxµ(X) corresponds
to 〈dxµ(X), Y 〉 = 0 for all Y ∈ t. Due to (5.5) this holds if and only if

Y #
x xωx(X) = 0 . (5.78)

Since Tx(T
n.x) is generated by n linear independent vectors Y #

x of the fundamental
vector �elds, assertion (5.76) follows.
We get

(5.75) = ker dxµ ∩ Tx(T n.x) = ker dxµ = Txµ
−1(p) . (5.79)

Here the second equality holds since due to the required invariance (5.6) of µ we
have

µ(T n.x) = p for all x ∈ µ−1(p) (5.80)

and thus dxµ(Tx(T
n.x)) = 0. In summary we have

µ−1(p) is a compact, orientable Lagrangian torus

inside the toric manifold (M2n, ω)

for all p ∈ ∆̊

(5.81)
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5.2 Examination/Perturbation of Moduli Spaces

After a detailed discussion about construction and examination of the 'target' (toric
symplectic manifold and Lagrangian subtori L(p)), we now try to get a better insight
into the behavior of the holomorphic curves that get mapped onto it. We a�liate
the discussion of section 2.3 where we clari�ed which objects are actually contained
in the corresponding moduli space

M(main),(reg)
l+1 (L(p), β) ≡M (5.82)

for β ∈ π2(M,L(p))
Hurewicz−→ H2(M,L(p); Z).

We aim to get a better insight into the properties of these moduli spaces. By picking
up the ideas of chapter 4 this is done in order to de�ne the stated algebraic concepts
(A∞-algebra, potential function PO, Maurer-Cartan solutions, etc.) of chapter 3
out ofM. The proofs of the facts that we state here are more or less the content of
the second part (i.e. chapter 7 and 8) of [FOOO1]. Due to its length and the amount
of technicality, a precise description about these ideas would go beyond the scope
of this text. Its relevance lies more on clarifying the language of Lagrangian Floer
Cohomology and especially how to �nd applications for facing current problems in
symplectic topology. Nevertheless for the interested reader we indicate where the
relevant proofs can be found in the literature.
Due to the construction of chapter 7.1 of [FOOO1] we have:

Proposition 5.1

For l 6= 0 the moduli space Mmain
l (L(p), β) can be equipped with an oriented

Kuranishi structure. Further it carries a topology due to which it is compact
(after compacti�cation) and Hausdor�.

To stay nearby our toric setup we remember proposition 4.1, namely that the Kuran-
ishi structure and especially the evaluation map can be chosen to be T n equivariant.
We additionally assume L ⊂ M to be relatively spin meaning that there exists a
class α ∈ H2(M ; Z2) such that for its restriction to L we have

α |L= w2(L). (5.83)

Here wi(L) denotes the i-th Stiefel-Whitney class of TL. In such a case we further
adopt the results of chapter 8 of [FOOO1] and get:

Proposition 5.2

Mmain
l (L(p), β) carries an orientation canonically induced by a chosen relative

spin structure for L ⊂M .

Remark that in the toric setup L(p) is always relatively spin. It is di�eomorphic to

T n = S1 × ...× S1 (5.84)

which in turn means that it is parallelizable (TT n ∼= T n×Rn) and we therefore get

w2(TL(p)) = w2(TT n) = 0 . (5.85)



5.2. EXAMINATION/PERTURBATION OF MODULI SPACES 79

Since we are working in the prescribed toric setup further helpful properties can be
deduced for this speci�ed situation.
Consider a �nite set of homology classes

{β1, ..., βN} (5.86)

for βi ∈ H2(M,L(p); Z) de�ned by the intersection product

βi • [µ−1(∂∆j)]︸ ︷︷ ︸
∈H2n−2(M,L(p);Z)

= δi,j. (5.87)

Here µ is the moment map and

∂∆i := {p ∈ ∂∆ | 〈p, vi〉 − λi = li(u) = 0} (5.88)

describes the i-th of the N faces of ∆.
As we will see in chapter 5.4 holomorphic discs of class βi are well understood,
meaning that due to the work of C.-H. Cho and Y.-G. Oh in [CO] we know their
Maslov index (µ(βi) = 2) and their symplectic volume (ω(βi) = 2πli(u)).
For our purpose we rely to Theorem 11.1. of [FOOO2] where these holomorphic
disks appear as follows and therefore are quite useful to understand moduli spaces
of Maslov index 2 type holomophic maps:

Proposition 5.3

(i) µ(β) < 0 or µ(β 6= 0) = 0 impliesMmain,reg
l+1 (L(p), β) = ∅

(ii) µ(β 6= βi) = 2 impliesMmain,reg
l+1 (L(p), β) = ∅

(iii) Mmain,reg
1 (L(p), βi) =Mmain

1 (L(p), βi) andMmain,reg
1 (L(p), β)

are Fredholm regular

(iv) ev :Mmain
1 (L(p), βi)→ L(p) is an orientation preserving di�eomorphism

(v) ev :Mmain,reg
1 (L(p), β)→ L(p) is a submersion

(vi) ev : Mmain
1 (L(p), β) 6= ∅ implies that β can be decomposed into disc- βi

and sphere components αj ∈ H2(M ; Z) i.e.

β =
N∑
i=1

kiβi +
∑
j

αj (5.89)

such that ∃ i0 with ki0 6= 0

Proof : [FOOO2]

As already described in section 4.4 for deriving a possibility of transporting forms
from sources to targets we need to perturb M by using multisections s. This
provides

ev :M1(L(p), β)sβ → L(p) (5.90)
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to be a submersion. Adopting the ideas of chapter 7.2 of [FOOO1] yields the
following result

Proposition 5.4

It is possible to choose multisections sβ,l+1 ≡ s forMmain
l+1 (L(p), β) such that

1. sβ,l+1 t 0 (transversal) and sβ,l+1(T n.·) = sβ,l+1(·) (T n invariant) .

Additionally the restriction sβ,l+1 |∂Mmain
l+1 (L(p),β) equals the restricted �ber prod-

uct sβ1,l1+1 × sβ2,l2+1. This equality holds on ∂Mmain
l+1 (L(p), β) that is given by

the union of �ber products

⋃
l1+l2=l+1

⋃
β1+β2=β

l2⋃
j=1

Mmain
l1+1(L(p), β1)ev0 ×evjMmain

l2+1(L(p), β2) (5.91)

Proof : [FOOO2]

For proving the assertion about the equality of the respective multisections one �rst
deduces it for sβ,1 of ∂Mmain

1 (L(p), β) and then makes use of the forgetful map:

forget0 :Mmain
l+1 (L(p), β)→Mmain

1 (L(p), β)

(w; z0, ..., zk) 7→ (w; z0)
(5.92)

This progression can be followed since one is able to show (Lemma 11.2. of [FOOO2])

sβ,l+1 = forget∗0(sβ,1). (5.93)

We further remark that the Proposition above is formulated a bit sloppy. The
correct way would be to regard only β with ω(β) < E for �xed energies E. It will
yield us an An(E),K(E)-algebra structure with

lim
E→∞

(n(E), K(E)) = (∞,∞). (5.94)

Tough one is able to show that the therein arising homomorphisms m
(E)
k can be

extended to a A∞ structure. Since as in our case the most interesting ingredient
namely the form of the potential function PO does not depend on the chosen E we
neglect these technical facts and take proposition 5.4 as it is stated above.

5.3 Construction of an A∞-algebra

As described in chapter 5.2 compact, orientable Lagrangian tori

L(p) := µ−1(p) (p ∈ ∆̊) (5.95)

arise as T n orbits in the corresponding toric symplectic manifold (M2n, ω, T n, µ).
For such a setup and the usage moduli spaces of stable maps from Riemann sur-
faces with boundary attaching these Lagrangians we aim to de�ne an A∞-algebra
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structure. Again this chapter relies on the ideas presented in [FOOO1], [FOOO2]
and [FOOO4].
In the following for the un�ltered R module we take the de Rham cohomology group

H∗dR(L(p),R) (5.96)

as a free graded module over R. The subscript 'de Rham' is mostly omitted in this
text except we are considering di�erent types of cohomology at the same time.
As a �rst step we declare homomorphisms

ml ≡ ml,β :
⊕
r1,...,rl

Hr1(L(p),R)⊗ ...⊗Hrl(L(p),R)→ H∗(L(p),R) (5.97)

of degree
l∑

i=1

ri + 1− µ(β) for β ∈ π2(M,L(p)).

Remark that since L(p) is a T n orbit, when choosing a T n equivariant metric on
L(p), we can always �nd a di�erential form

α ∈ Ωr(L(p)) (5.98)

that is harmonic (∆α = 0) if and only if it is T n equivariant that is

α(ψg(x)) = (ψg−1)∗α(x) for g ∈ T n. (5.99)

According to the work of W. V. D. Hodge (e.g. [La]) we have an isomorphism

Hr(L(p),R) ∼= Ωr
harmonic(L(p)) . (5.100)

So in the following for an equivalence class [αi] ∈ Hri(L(p),R) we always take its
unique harmonic and T n equivariant representative

αi ∈ Ωri(L(p)) . (5.101)

We will mostly neglect the homology class brackets [·] and write α likewise for
harmonic forms or homology classes if no confusion can occur.
To adopt the results of chapter 4.4 and 5.2 we denote

M =Mmain
l+1 (L(p), β)sβ

Lsource :=L(p)× ...× L(p)︸ ︷︷ ︸
l

evsource :=(ev1, ..., evl)

Ltarget :=L(p)

evtarget :=ev0

(5.102)

for evaluation maps

evi :M→ Ln ⊂M2n

[(w; p0, ..., pl)] 7→ w(pi).
(5.103)
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Further recall Proposition 4.1, namely that the evaluation map at the 0th marked
point ev0 :Ml+1(β)→ L is T n equivariant, weakly continuous and weakly submer-
sive.
With the transport of forms (4.79) we are to able de�ne degree 1− µ(β) maps

ml,β : (C[1])r1 × ...× (C[1])rl → (C[1])

l∑
i=1

ri−µ(β)+1
(5.104)

by setting Cr1 := Hr1(L(p),R) and declaring

ml,β : Hr1+1(L(p),R)⊗ ...⊗Hrl+1(L(p),R)→ H

l∑
i=1

(ri+1)+dimLt−vir.dimM=(∗)
(L(p),R)

(α1, ..., αl) 7→ (M, sβ, evs,t)∗(α1 × ...× αl)
(5.105)

which indeed is of degree

(∗) =
l∑

i=1

(ri + 1) + n− (n+ µ(β) + l + 1− 3) =
l∑

i=1

ri − µ(β) + 2 (5.106)

that is

im(ml,β) ∈ H
l∑
i=1

ri−µ(β)+2
(L(p),R) = (C[1])

l∑
i=1

ri−µ(β)+1
. (5.107)

Remark that the image of ml,β is a T n equivariant form and therefore again
harmonic. This holds since we are able to choose the Kuranishi structure (Prop.
4.1) and sβ ((4.54)-(4.56)) to be T n equivariant. Further it is clear that ml,β = 0
forMmain

l+1 (L(p), β)sβ = ∅.
In order to check that the A∞-relation can be derived following this approach, recall
equation (4.80)

d((M, s, evs,t)∗(·))︸ ︷︷ ︸
=0

= (M, s, evs,t)∗(d·)︸ ︷︷ ︸
=0

±(∂M, s, evs,t)∗(·) . (5.108)

The two indicated terms vanish since we are working with harmonic and thus es-
pecially closed forms. We already outlined how ∂M looks like. With (5.91) and
(5.108) we get

(
⋃

l1+l2=l+1

⋃
β1+β2=β

l2⋃
j=1

=Mrt︷ ︸︸ ︷
Mmain

l1+1(L(p), β1)
sβ1
ev0 ×evjMmain

l2+1(L(p), β2)sβ2 ,

srt, evrt,r, evrt,t)∗(α1 × ...× αl) = 0 .

(5.109)

Recall Lemma 4.3 namely how the transport of forms is composed and thereof get

∑
l1+l2=l+1

∑
β1+β2=β

l2∑
j=1

(−1)�l(Mmain
l2+1(L(p), β2)sβ2 , sst,

evst︷ ︸︸ ︷
(evj, ..., evj+l−l1),

evt︷︸︸︷
ev0 )∗◦

◦(Mmain
l1+1(L(p), β1)sβ1 , srs, (ev1, ..., (̂evst), ..., evl)︸ ︷︷ ︸

evr

, ev0︸︷︷︸
evrs

)∗(α1 × ...× αl) = 0.

(5.110)



5.3. CONSTRUCTION OF AN A∞-ALGEBRA 83

Here the sign prefactor

�l :=

j−1∑
i=1

(deg αi + 1) (5.111)

seems to be chosen a bit arbitrarily in a way such that everything �ts nicely into the
desired A∞-algebra concept. In fact the reader is referred to chapter 8 of [FOOO1]
where the orientation issues respectively sign conventions are discussed. There it is
proven that one can �nd orientations (depending on the relative spin structure on
L(p)) that �t appropriately in the way described here.

According to the manner how ml,β is de�ned, equation (5.110) can be rewritten
as

∑
l1+l2=l+1

l2∑
j=1

∑
β1+β2=β

(−1)�lml1,β1(α1, ..., αj−1,ml2,β2(αj, ..., αj+l−l1), ..., αl) = 0

(5.112)

Theorem 5.3

The data

(H∗(L(p),ΛR
0 ),ml,F) := (H∗(L(p),R)⊗R Λ0,

∑
β∈π2(M,L(p))

T
ω(β)
2π ml,β,F)

de�nes a �ltered A∞-algebra (F an energy �ltration) carrying the following
properties:

(i) being weak, that is
m0(1) ∈ H0(L(p),ΛR

0 ) (5.113)

not necessarily equal 0

(ii) being G-gapped, that is

G = ({ω(β)/2π | ml,β 6= 0}︸ ︷︷ ︸
⊂R≥0

,+, 0) (5.114)

is a discrete submonoid and therefore satis�es (i) of condition 3.1

(iii) being unital with unit

e = PD([L(p)]) ∈ H0(L(p),ΛR
0 ) (5.115)

given by the Poincaré dual of the fundamental class of L(p).

Proof : Recall section 2.1 namely that Λ0 is a principal ideal domain and thus the
universal coe�cient theorem allows to just tensor it with H∗(L(p),R) in order to
get a graded ΛR

0 module.
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Obviously the �ltration F induced by

T λH l(L(p),ΛR
0 ) for λ ∈ R (5.116)

is an energy �ltration satisfying axioms (i)− (v) of Def. 3.3. Remark that

ΛR
0
∼=

ΛR
0,nov

(e− 1)
(5.117)

that is forgetting the formal parameter e further guarantees convergence of mk and
therefore im (mk) ∈ H∗(L(p),ΛR

0 ).
The A∞-relation (3.63) is satis�ed by (5.112), namely one has

∑
l1+l2=l+1

l2∑
j=1

(−1)�lml1(α1, ..., αj−1,ml2(αj , ..., αj+l−l1), ..., αl) =

=
∑

l1+l2=l+1

l2∑
j=1

∑
β1+β2=:β

(−1)�lT
ω(β1)+ω(β2)

2π

ml1,β1(α1, ..., αj−1,ml2,β2(αj , ..., αj+l−l1), ..., αl) =

=
∑
β

T
ω(β)
2π

∑
l1+l2=l+1

l2∑
j=1

∑
β1+β2=β

(−1)�l

ml1,β1(α1, ..., αj−1,ml2,β2(αj , ..., αj+l−l1), ..., αl) = 0.
(5.118)

In order to check (i) we need a reasonable form for m0,β . This yields that m0 is of
the form

m0(1) =
∑
β

T
ω(β)
2π ev∗([Mmain

1 (L(p), β)sβ ]) =
∑

µ(β)=2

T
ω(β)
2π [L(p)]︸ ︷︷ ︸
∈Hn(L(p),R)∼=H0(L(p),R)

.

(5.119)
Degree considerations imply that in the sum we just have to consider homotopy
classes β with Maslov index µ(β) = 2. We soon describe this aspect a bit more
precisely in (5.131) and (5.134). Fact (ii) and (iv) of Proposition 5.3 then imply

L(p) ∼=Mmain
1 (L(p), βi) =Mmain

1 (L(p), βi)sβi =Mmain
1 (L(p), β)sβ (5.120)

meaning that the usage of multisections is redundant here since we already have a
manifold structure.

G is a submonoid with identity ω(β0 = 0)/2π = 0 (β0 represented by constant
maps) since for the symplectic volume one has ω(β1) + ω(β2) = ω(β1 + β2). The
fact that it is discrete in R≥0 follows by (vi) of of Proposition 5.3, namely

ω(β) =
N∑
i=1

ki︸︷︷︸
∈Z≥0

ω(βi) +
∑
j

ω(αj) . (5.121)

The fact that ω(αj) ∈ Z≥0 follows by Gromov�s compactness theorem namely it
states amongst others that

{ω(α) | ∃ holomorphic sphere w of class α} (5.122)
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is a discrete subgroup (and therefore Z≥0) of R≥0.

For assertion (iii) we make use of Lemma 7.3.2. of [FOOO1]. Since in our case
due to Lemma 11.2. of [FOOO2] we have

(forget0)∗sβ,1 = sβ,k+1 (5.123)

The stated Lemma provides the identity

[ml,β(α1, ..., αj−1, e, αj+1, ..., αl)] =
{

[0], (l, β) 6= (l, β0 = 0)
(−1)deg(α1)[α1], (l, β) = (1, β0)

(5.124)

that yields the required relations 3.5 (d):

[ml(...)] =
∑

β∈π2(M,L(p))

T
ω(β)
2π [ml,β(...)] = (−1)deg(α1)T

ω(β0)
2π [α1] = (−1)deg(α1)[α1].

(5.125)

Remark 5.1. Using ΛR
0,nov instead of ΛR

0 coe�cients and de�ning

ml :=
∑

β∈π2(M,L(p))

T
ω(β)
2π e

µ(β)
2 ml,β (5.126)

provides that ml is a degree +1 map. Recall that ml,β is of degree 1 − µ(β), the
formal generator e is of degree 2 and since we are considering oriented Lagrangian
tori L(p) the Maslov index is in 2Z. We resign this degree advantage since we want
to utilize the better ring theoretical handling (principal ideal domain etc.) of ΛR

0

than ΛR
0,nov.

The way how to de�ne a Lagrangian Floer cohomology

HF (H∗(L(p),ΛR
0 ), b; ΛR

0,nov) ≡ HF (L, b; ΛR
0 ) (5.127)

now is already presented in section 3.2.2 (usually we follow the weak approach since
it is more general). To do so we have to deal with weak Maurer-Cartan solutions
b that are related to the potential function PO as they form its domain. As the
headline of section 5.5 suggests we are aiming to explicitly calculate PO for toric
�bers out of the previously de�ned A∞-algebra structure.
For the de�nition of PO recall (3.126). In our case it is of the form

PO : M̂weak(H
∗(L(p),ΛR

0 ))→ Λ+
0 (R) ≡ ΛR

+

PO(b) de�ned by m(eb) = PO(b) · e
(5.128)

for b ∈ M̂weak(H
∗(L(p),ΛR

0 )) ⊂ H1(L(p),ΛR
0 ).

To be consistent with the literature we remark thatMweak(· · ·) arises of M̂weak(· · ·)
and by identifying gauge equivalent elements b0, b1 of the latter. The reader is
referred to De�nition 4.3.19. of [FOOO1] where this equivalence relation ∼G is
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de�ned and properly discussed in the ongoing of the stated chapter 4. Here we
only remark that it is possible to show that ∼G is trivial (b0 ∼G b1 ⇒ b0 = b1) on
H1(L(p),ΛR

0 ) in our toric setup and we thus can forget the ·̂ sign meaning that we
write

M̂weak(· · ·) ≡Mweak(· · ·) (5.129)

likewise for weak Maurer-Cartan solutions in the following.
To achieve more transparency of the potential�s nature, we outline that for such a
weak Maurer-Cartan solution b we have

m(eb) = m(1 + b⊗ b+ b⊗ b⊗ b+ ...) =

=
∞∑
l=0

mk(b, ..., b︸ ︷︷ ︸
l

) =

=
∑
l

∑
β

T
ω(β)
2π ml,β(b, ..., b)

!∼ PD([L(p)])︸ ︷︷ ︸
=e

.

(5.130)

We have to �nd a way how to compute the above proportionality factor. For this
we need an explicit expression for ml,β. The next section�s considerations show
that the homomorphisms ml,β (and therefore also PO) can be expressed by purely
'coordinate' data of the corresponding polytope in Rn (the symplectic volume is
also computable in terms of polytopial data).
First remark that according to their de�nition we have

deg(ml,β(b, ..., b)) =
l∑

i=1

1 + dimLt − vir.dimMmain
l+1 (L(p), β)sβ =

= l + n− (n+ µ(β) + l + 1− 3) = 2− µ(β)
!

≥ 0 .

(5.131)

Therefore in the sum (5.130) we only need to consider homology classes β with
Maslov index

µ(β) ∈ {2} ∪ 2Z≤0 . (5.132)

Using the ideas of chapter 5.2 we conclude that for the calculation of m(eb) the
case µ ≤ 0 can also be excluded. More precisely one purpose of perturbing moduli
spaces by using multisections sβ was to make

ev :Mmain
1 (L(p), β)sβ → L(p) (5.133)

submersive. By comparing dimensions

n = dim L(p) ≤ vir.dimMmain
1 (L(p), β)sβ = n+ µ(β) + 1− 3 (5.134)

we conclude µ(β) ≥ 2 respectively µ(β) = 0 for the class of constant curves β = β0.
In the proof of the upcoming proposition 5.5 we thus only have to consider curves
of these two speci�c types. Thanks to the work of C.-H. Cho and Y.-G. Oh in [CO]
(a short idea providing summary is given in section 5.4), pseudo-holomorphic discs
representing these allowed classes β can be nicely described by 'coordinate' data of
the underlying moment polytope.
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Proposition 5.5

For a toric manifold M2n the potential function PO is de�ned for degree one
cohomology classes b with strictly positive valuation value ν(b) ∈ (0,∞). That
is we have an embedding

H1(L(p),ΛR
+) ↪→ M̂weak(H

∗(L(p),ΛR
0 )) . (5.135)

The potential when restricted to H1(L(p),Λ+) can then written as

PO(b) = PO(x1, ..., xn; p1, ..., pn) =

=
N∑
i=1

y
vi,1
1 ...yvi,nn T li(p)+

+
∑
j

cjy
v′j,1
1 ...y

v′j,n
n T l

′
j(p)+ρj

︸ ︷︷ ︸
= 0 for M Fano

(5.136)

Before giving a proof of the statements above and thereby a depiction of the ap-
pearing variables (see chapter 5.5), we �rst try to enlighten the abstract build up
by making use of the advantage that we are dealing with toric manifolds. This fact
simpli�es the handling of the appearing pseudo-holomorphic curves since relevant
ingredients (sympletic volume etc.) can be described by coordinate data.

5.4 Characterization of holomorphic discs via poly-

topial data

As motivated in the end of the last section we aim to get more insight into the na-
ture of the homomorphisms ml,β. In order to do so we luckily can refer to the work
of C.-H. Cho and Y.-G. Oh in [CO]. Their work provides a possibility to describe
holomorphic discs, of class β ∈ π2(M,L) attaching the Lagrangian torus �bers L,
in a more seizable way. Especially we get an expression for their symplectic energy
ω(β) by coordinate data of the corresponding moment polytope. This description
works at least for β with Maslov index µ(β) = 2. As already indicated above, by
degree considerations, these classes are enough to be understood for our purpose,
that is to prove Proposition 5.5. To see how to interpret the results of [CO] we
�rst have to review and deepen some facts of how the construction of n dimensional
toric manifolds out of fans respectively their dual polytopes is performed.
As indicated in (5.10) polytopes can be described by intersections of N half-spaces
(with weights λi) of dimension n, and those in turn by the inward pointing normal
vectors vi ∈ t (i ∈ {1, ..., d}). We try to put this in a more general context here.
For a detailed description (and especially proofs) we again refer to [Au].

Linear independent vectors vi ∈ Zn =: N form integral generators of convex
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subsets called k-dimensional cones de�ned as

σ(k) ≡ σ := {a1v1 + ...+ akvk | ai ∈ R≥0}︸ ︷︷ ︸
abbreviated by 〈v1,...,vk〉0

⊂ N ⊗ R =: NR . (5.137)

To relate this point of view with the concepts presented in the beginning of chap-
ter 5.1, think about these vectors vi as the inward pointing normal vectors of the
moment polytope.
A cone σ′ of the form

σ′ := {ai1vi1 + ...+ ailvil | aij ∈ R≥0} for l ≤ k. (5.138)

is called a l-dimensional face of σ = 〈v1, ..., vk〉0 (expressed by σ′ ≺ σ).
A collection Σ of such cones σ1, ..., σs is called a complete n dimensional fan if the
following conditions hold for i ∈ {1, ..., s}:

(i) σi ∈ Σ , σ′i ≺ σi ⇒ σ′i ∈ Σ

(ii) σ′i ∩ σi ≺ σi , σ
′
i ∩ σi ≺ σ′i

(iii)
s⋃
i=1

σi = NR .

Further denote by Σ(k) := {σ(k)
i } ⊂ Σ the set of k dimensional cones in Σ.

Vectors generating cones of dimension one in NR

{(v1, ..., vN :=|Σ(1)|) | 〈vi〉0 ∈ Σ(1)} =: G(Σ) (5.139)

are used to map NR isomorphically to CN via vi ↔ zi, for {z1, ..., zN} being a basis
of CN (do not mix up the number N with the set N = Zn). Additionally we identify
subsets

{(vi1 , ..., vip) | 〈vi1 , ..., vip〉0 6= Σ(p), 〈vi1 ,..., vik〉0 ∈ Σ(k) ∀ 0 ≤ k < p} =

=: P ⊂ G(Σ)

l
{z | zi1 = ... = zip = 0} =: A(P) ⊂ CN .

(5.140)

For a cone σ(k) = 〈vi1 , ..., vik〉0 generated by {vi1 , ..., vik} we further de�ne subsets

U(σ(k)) := {z | zj 6= 0 for j /∈ {i1, ..., ik}}︸ ︷︷ ︸
∼= Ck×(C∗)N−k

⊂ CN . (5.141)

One can easily check that for such sets U(σ) the following holds:

(i) U(Σ) :=
⋂
P

(CN − A(P)) ≡
⋃
σ∈Σ

U(σ)

(ii) σ′ ≺ σ ⇒ U(σ′) ⊂ U(σ)

(iii) U(σ′) ∩ U(σ) = U(σ′ ∩ σ) .
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The orbit spaces (in fact they are manifolds since, as we see soon, the action of
D(Σ) is free)

XΣ := U(Σ)/D(Σ) and Xσ(n) := U(σ(n))/D(Σ) (5.142)

are now de�ned to be the compact toric n dimensional manifold associated with Σ
respectively their charts covering it (U(Σ) =

⋃
σ∈Σ

U(σ)).

So let us clarify how the group action of D(Σ) looks like and especially why this
action is considered to be free.
The connected commutative subgroup (componentwise multiplication)

D(Σ) ⊂ (C∗)N (5.143)

is generated by elements

(tλ1 , ..., tλN ) for t ∈ C∗ . (5.144)

Here λ = (λ1, ..., λN) ∈ ZN are of the form such that

λ1v1 + ...+ λNvN = 0 (5.145)

for the vectors vi as in (5.139). It is clear that D(Σ) acts freely on U(Σ) respectively
U(σ) by componentwise multiplication.
We get that the charts Xσ(n) induced by a cone of dimension n

σ(n) = 〈vi1 , ..., vin〉0 (5.146)

({vi1 , ..., vin} basis of N = Zn) are isomorphic to Cn. Coordinates (x1, ..., xn) can
explicitly be written as

xσ
(n)

j = z
〈v1,uij 〉
1 · ... · z

〈vN ,uij 〉
N . (5.147)

Here {ui1 , ..., uin} denotes the basis of

M := HomZ(N,Z) (5.148)

dual to {vi1 , ..., vin}.
The modalities of how one constructs the explicit torus action and the symplectic
form on XΣ can be found [Au]. We skip this point here since we do not need its
speci�c form in the upcoming progress.

For not just stating abstract theoretical concepts we want to get a bit more
speci�c and illustrate how they are applied for constructing the toric manifold CP 2

(see example b) in section 5.1) out of given 'fan' data.

Example: From Σ to CP 2
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Recall the moment polytope (5.31) for CP 2. For the 2 dimensional fan Σ we get

G(Σ) = {v1 = (1, 0), v2 = (0, 1), v3 = (−1,−1)} that is vi ∈ Z2 . (5.149)

These 3 inward pointing normal vectors are pairwise linearly independent in R2 thus
generate 2 dimensional cones. Since we can not have 3 dimensional cones we get

P = {v1, v2, v3} ←→ A(P) = {0} ⊂ C3. (5.150)

This implies that
U(Σ) = C3 − {0} = (C∗)3 . (5.151)

The equation
λ1v1 + λ2v2 + λ3v3 = 0 (5.152)

is solved by {(a, a, a) | a ∈ Z} and therefore

D(Σ) = {(z, z, z) | z ∈ C∗} ∼= C∗ (5.153)

consists of the diagonal elements in (C∗)3. So

XΣ = UΣ/DΣ = (C∗)3/C∗ (5.154)

is in fact the 2 dimensional complex projective space CP 2.
For charts X

σ
(2)
ij

we regard the 2 dimensional cones σ
(2)
ij and identify them as de-

scribed in (5.142):

σ
(2)
23 = 〈v2, v3〉0 −→ U(σ

(2)
23 ) = {z ∈ C3 | z1 6= 0} −→ X

σ
(2)
23

= {[z1, z2, z3] | z1 6= 0}

σ
(2)
13 = 〈v1, v3〉0 −→ U(σ

(2)
13 ) = {z ∈ C3 | z2 6= 0} −→ X

σ
(2)
13

= {[z1, z2, z3] | z2 6= 0}

σ
(2)
12 = 〈v1, v2〉0 −→ U(σ

(2)
12 ) = {z ∈ C3 | z3 6= 0} −→ X

σ
(2)
12

= {[z1, z2, z3] | z3 6= 0}
(5.155)

These are the well know charts covering CP 2. Using (5.147) they are mapped to
C2 also in the common fashion, namely coordinates for e.g. X

σ
(2)
12

are of the form

x
σ

(2)
12

1 = z
〈v1,e1〉
1 · z〈v2,e1〉

2 · z〈v3,e1〉
3 = z1 · z−1

3

x
σ

(2)
12

2 = z
〈v1,e2〉
1 · z〈v2,e2〉

2 · z〈v3,e2〉
3 = z2 · z−1

3 .
(5.156)

Characterization of holomorphic discs

We aim to state some results of [CO]. These are necessary in order �nd coor-
dinate expressions (in the sense of (5.147)) for holomorphic discs of class βi with
Maslov index two.
As we will see, there are only N = |G(Σ)| discs of this type and we actually can
compute their symplectic volume

ω(βi) for i ∈ {1, ..., N} (5.157)
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in terms of the inward pointing normal vectors vi and the conditions λi, determining
the half-spaces of ∆ in (5.10).
For a holomorphic disc

w : (D2, ∂D2)→ (XΣ, L(p)) of class w∗([D
2]) = β (5.158)

attaching the Lagrangian subtorus L(p) = µ−1(p) (for p ∈ ∆̊), the Maslov index
can be computed by

µ(β) = 2 · (intersection multiplicities of im(w) with V (vi)) . (5.159)

The n− 1 dimensional manifolds V (vi) are de�ned by the image

π({z ∈ U(Σ) | zi = 0}) (5.160)

for π being the projection of the principal bundle

U(Σ)
π→ U(Σ)/D(Σ) = XΣ . (5.161)

One can show that V (vi) = µ−1(∂∆i) for µ being the moment map and ∂∆i the
i-th face as in (5.88). To �nd coordinate expressions for such discs we make use of
the fact (Theorem 5.3. of [CO]) that holomorphic discs can be lifted (π ◦ w̃ = w) in
the following way: (⋂

P
(CN − A(P)), π−1(L(p))

)
π

��
(D2, ∂D2) w

//

w̃
44iiiiiiiiiiiiiiiii

(XΣ, L(p))

Further developing the argumentation of this classi�cation theorem illustrates that
holomorphic discs D(v1), ..., D(vN) of the form

D(vi) = π({w̃(z) ∈ U(Σ) | zl = cl for l 6= i, zi = ci · z, z ∈ D2}) (5.162)

and of class β1, ..., βN are the only ones (up to reparametrization by PSL(2,C)) with
Maslov index µ(βi) = 2. Proposition 7.4. of [CO] additionally provides that such
discs D(vi1), ..., D(vin) are contained in the chart Xσ(n) obtained by the cone

σ(n) = 〈vi1 , ..., vin〉0 . (5.163)

We can use (5.147) and write an explicitely coordinate expression for a disc

D(vi) ⊂ Xσ(n) (5.164)

in terms of coordinates of Cn, namely

(c′1 · zvi1 , ..., c′n · zvin ) . (5.165)

Here z ∈ D2 and the c′l are constants in C∗ chosen such that the boundary of the
discs attach the Lagrangian submanifold ∂D(vi) ⊂ L.
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In Theorem 8.1. of [CO] C.-H. Cho and Y.-G. Oh actually compute the symplectic
volume ω(βi) of these speci�c discs. For D(βi) attaching the Lagrangian torus �ber
L(p) it is given by

ω(βi) = 2π(〈p, vi〉 − λi) =: 2πli(p) . (5.166)

As claimed we now have an expression that allows to compute the symplectic energy
of all holomorphic discs of Maslov index 2 in terms of the corresponding polytopial
data.

Interrelation between Fans and (Co-)Homology

The last ingredient for proving Proposition 5.5 is to achieve a coordinate de-
scription (x1, ..., xn) for weak bounding cochains

b ∈ H1(L(p); ΛR
+) . (5.167)

This further allows to link the cohomology/homology pairing ∂βi(b) with the in
(5.136) appearing product

n∏
j=1

y
vij
j (5.168)

in (5.136) for i ∈ {1, ..., N}.
Cones for a given fan live in NR which is characterized by the lattice

N = Zn ∼= H1(T n; Z) ∼= H1(L(p); Z) (5.169)

since the n dimensional torus T n and the torus �ber L(p) are di�eomorphic.
So by choosing an integral basis {e∗1, ..., e∗n} for N = Zn and dualizing it, provides
{e1, ..., en} as a basis for H1(L(p); Z). This in turn allows to decompose

H1(L(p); Z)⊗Z ΛR
+
∼= H1(L(p); ΛR

+) 3 b =
n∑
j=1

xjej (5.170)

with coe�cients xj ∈ ΛR
+. We additionally de�ne

yj := exj =
∞∑
k=0

xkj
k!
∈ ΛR

0 . (5.171)

For now interpreting ∂βi(b) for a disc D(vi) of class w∗[D(vi)] = βi (for i ∈
{1, ..., N}) we make use of (5.165) that provides a description of ∂D(vi) by

(c′1 · zvi1 , ..., c′n · zvin ) with |z| = 1. (5.172)

For the boundary class ∂βi ∈ H1(L(p); Z) and b =
n∑
j=1

xjej ∈ H1(L(p); ΛR
+) we can

therefore describe its pairing by using the described dual bases

∂βi(b) =
n∑
j=1

vijxj = 〈vi, b〉 . (5.173)
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In the upcoming proof this allows to use the identity

∞∑
k=0

∂βi(b)

k!
= e〈vi,b〉 =

n∏
j=1

y
vij
j . (5.174)

5.5 Explicite Calculation of PO for Toric Manifolds

(proof of Proposition 5.5)

The upcoming proof is a summary of the considerations presented in chapter 11
of [FOOO2]. In the following section we make use of x ∈ H1(L(p); R), b ∈
H1(L(p); ΛR

+), l ≥ 0 and β ∈ π2(M,L(p)).

(i) Computation of ml,β :

As a �rst step we try to calculate ∫
L(p)

ml,β(x, ..., x) (5.175)

for relative homotopy classes β with Maslov index µ(β) = 2.
As a working tool consider the compacti�ed moduli spaceMl+1(C, S1; βC) of genus
0 stable maps

w : (Σ, ∂Σ)→ (C, S1) (5.176)

of class βC ∈ H2(C, S1; Z) with l + 1 marked points {z0, ..., zl} from bordered Rie-
mann surfaces Σ onto C attaching the Lagrangian submanifold S1 ⊂ C. The corre-
sponding l + 1 component evaluation map is of the form

ev = (ev0, ..., evl) :Ml+1(C, S1; βC)→ (S1)l+1

[w; (z0, ..., zl)] 7→ (w(z0), ..., w(zl)) .
(5.177)

For a �xed base point p0 ∈ S1 we have

Ml+1(C, S1; βC)p0 := ev−1
0 (p0) ⊂Ml+1(C, S1; βC) (5.178)

as the subset with '�xed' 0-th marked point. Due to (5.93) we know that sβ,k+1

arises as a pullback of sβ,1 by the map forget0, forgetting all but the 0-th marked
point. In that sense we get a �bration

Mmain
l+1 (L(p), β)sβ →Mmain

1 (L(p), β)sβ (5.179)

with �berMl+1(C, S1; βC)p0 . The information about the marked points {z1, ..., zl}
is encoded inMl+1(C, S1; βC)p0 or more visible via the di�eomorphism

Ml+1(C, S1; βC)p0 ∩M
reg
l+1(C, S1; βC)→ {(t1, ..., tl) ∈ R | 0 < t1 < ... < tl < 1}
[w; (z0, ..., zl)] 7→ (w(z1)− w(z0), ..., w(zl)− w(z0)) ,

(5.180)
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which is well-de�ned since, due to (2.49), for curves of the same isomorphism class
we have

w′(z′i) = w(φ−1(z′i)) = w(zi) . (5.181)

With (5.179) we get that the evaluation map

ev = (ev0, ..., evl) :Mmain
l+1 (L(p), β)→ L(p)l+1 (5.182)

can be written as

ev0(u; t1, ..., tk) = ev(u)

evi(u; t1, ..., tk) = [ti∂β] · ev(u)
(5.183)

for u ∈Mmain
1 (L(p), β) and ∂β ∈ H1(L(p); Z).

Recall (5.105), namely the homomorphisms ml,β(x, ..., x︸ ︷︷ ︸
l

), for x ∈ H1(L(p); R), are

de�ned via pulling back l harmonic one forms of L(p) with (ev1, ..., evl) and then
integrating along the �ber

Mmain
1 (L(p), β)sβ × {(t1, ..., tl) ∈ R | 0 < t1 < ... < tl < 1} (5.184)

with ev, which yields one 2− µ(β)︸︷︷︸
= 2

= 0 form on L(p). With (5.183)

∫
L(p)

ml,β(x, ..., x) (5.185)

thus writes as∫
L(p)

ml,β(x, ..., x) =

∫
L(p)

ev∗(Mmain
1 (L(p), β)sβ)

︸ ︷︷ ︸
= deg [ev:Mmain

1 (L(p),β)→L(p)] =: cβ

·
∫
t1∂β

x · · ·
∫
tl∂β

x =

= cβ vol({(t1, ..., tl) ∈ R | 0 < t1 < ... < tl < 1})︸ ︷︷ ︸
= 1

l!

·(
∫
∂β

x)l =
cβ
l!

(∂β(x))l

(5.186)

which is equivalent to

ml,β(x, ..., x) =
cβ
l!

(∂β(x))l · PD([L(p)]) . (5.187)

(ii) Proof of H1(L(p),ΛR
+) ↪→Mweak(H

∗(L(p),ΛR
0 )) :

For an element b ∈ H1(L(p),ΛR
+) we have

m(eb) =
∞∑
l=0

∑
β

ml,β(b, ..., b)︸ ︷︷ ︸
∈ Ωl−(n+µ(β)+l+1−3)−n(L(p)) = Ω2−µ(β)(L(p))

T
ω(β)
2π . (5.188)
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Recall (5.131), namely the indicated degree consideration yield that we just have
to sum over β with µ(β) = 0 (with Proposition 5.3 (i) only for β = β0 = 0) and
β with µ(β) = 2. For the case of constant curves (i.e. of class β0) remark that for
harmonic forms α ∈ Ω1(L(p)), when following the ideas of the former proof we get

m0,β0 = 0

m1,β0(α) = ±dα = 0

ml≥2,β0(α, ..., α) = α ∪ ... ∪ α =︸︷︷︸
deg α=1

0 .
(5.189)

Since only relative homotopy classes with Maslov index µ(β) = 2 survive, we are
allowed to apply the previous result (i) and thus write (5.188) as

m(eb) = (
∑
β,

µ(β)=2

∞∑
l=0

cβ
l!

(∂β(b))lT
ω(β)
2π

︸ ︷︷ ︸
(∗)

) · PD([L(p)]) =

= PO(b) · PD([L(p)]) .

(5.190)

It is important that we require b ∈ H1(L(p),ΛR
+) not having a constant summand

(that is to work with ΛR
+ instead of ΛR

0 coe�cients). It guarantees convergence
(with respect to the energy �ltration F) of (∗), a�ecting in that the sums can be
interchanged and that we can interpret the proportionality factor as the search
potential function

PO(b) =
∑
β,

µ(β)=2

∞∑
l=0

cβ
l!

(∂β(b))lT
ω(β)
2π ∈ ΛR

+ . (5.191)

In summary we have that H1(L(p),ΛR
+) embeds intoMweak(H

∗(L(p),ΛR
0 )) and thus

can be seen as a (not yet the whole) domain of PO.

(iii) A coordinate expression for PO :

Recall result (vi) of Proposition 5.3, namely

β =
N∑
i=1

ki · βi︸︷︷︸
holomorphic

disc

+
∑
j

αj︸︷︷︸
holomorphic

sphere

(5.192)

and clearly

∂β =
N∑
i=1

ki · ∂βi (5.193)
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for βi realized by the holomorphic discs analyzed in section (5.4). Considering the
Maslov indices we know

2 = µ(β) =
N∑
i=1

ki︸︷︷︸
∈ Z≥0

·µ(βi)︸ ︷︷ ︸
= 2

+
∑
j

µ(αj) = 2Z≥0 +
∑
j

µ(αj) . (5.194)

Assume now that the corresponding compact toric symplectic manifold M is Fano
which yields that every nontrivial holomorphic sphere u : S2 → M of class αj has
positive Chern number

〈c1(M), αj〉 > 0 (5.195)

and therefore only nonnegative Maslov index can possibly appear in (5.194). Com-
bining this with (5.191) we get that in the Fano case PO(b) can be written as

N∑
i=1

∞∑
l=0

cβi
l!

(∂βi(b))
lT

ω(βi)

2π . (5.196)

When recollecting our developed knowledge about holomorphic discs of class βi (see
section 5.4) we have:

(i) ω(βi) = 2πli(p)

(ii) ∂βi(b) = 〈vi, b〉 =
n∑
j=1

vijxj

(iii) ev : Mmain
1 (L(p), βi) → L(p) is an orientation preserving di�eomorphism

(Proposition 5.3 (iv)) and thus cβi = deg[ev :Mmain
1 (L(p), βi)→ L(p)] = 1

In summary (which then also signi�es the end of the proof) we get for M being
Fano toric:

PO(b) =
N∑
i=1

∞∑
l=0

(
n∑
j=1

vijxj)
l

l!
T li(p) =

N∑
i=1

evi1x1 · ... · evinxnT li(p) =︸︷︷︸
(5.171)

=
N∑
i=1

y
vi1
1 · ... · yvinn T li(p)

(5.197)

For the non-Fano case things are less transparent. Performing the same consider-
ations as above, but now with non-vanishing αj in (5.192) yields for M not being
Fano toric:

PO(b) =
N∑
i=1

y
vi1
1 · ... · yvinn T li(p)︸ ︷︷ ︸

=: PO0(b)

+
∑
j

cj · y
v′j1
1 · ... · y

v′jn
n T l

′
j(p)+ω(αj)

(5.198)
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Here we de�ned cj := deg[ev :Mmain
1 (L(p), αj)→ L(p)] and

v′j :=
N∑
i=1

kji vi , l′j(p) :=
N∑
i=1

kji li(p) (5.199)

for appropriate kji ∈ Z≥0 arising in the decompositions (5.192) for β ∈ π2(M,L(p)).

5.6 Outlook for further studies:

non-Fano toric manifolds

As a �nal announcement we remark that in most cases it is highly nontrivial to fully
calculate the potential function and not just the leading order term PO0.
The reader is referred to e.g. [FOOO3] where K. Fukaya et al. introduce among
others the notion of bulk deformations in order to bypass these kind of di�culties.
Further in [FOOO5] the authors explicitly calculate the full potential function for
the non-Fano Hirzebruch surface (5.60) Hk=2(α).
The moment polytope

{(u1, u2) ∈ R2 | ui ≥ 0, u2 ≤ 1− α, u1 + ku2 ≤ k} =

={u | li(u) = ui ≤ 0, l3(u) = 1− α− u2 ≤ 0, l4(u) = 2− u1 + 2u2 ≤ 0}
(5.200)

then yields a potential function of the form

PO(y; p) = y1T
u1 + y2T

u2 + y−1
1 y−2

2 T 2−u1−2u2 + y−1
2 T 1−α−u2︸ ︷︷ ︸

PO0(y1,y2;u1,u2)

+ c︸︷︷︸
= T 2α

T 1−α−u2y−1
2 .

(5.201)
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Chapter 6

Applications:

Properties of PO -

Relation to mathematics

6.1 Lagrangian Floer Cohomology for pairs L0, L1

of Lagrangian submanifolds

In order to face intersection issues for Lagrangian submanifolds we try to extend the
ideas of chapter 5. Our aim is to de�ne a Lagrangian Floer Cohomology theory, now
not only for a single Lagrangian but for a pair L0, L1. Due to the work of K. Fukaya
et al. this is possible at least if both intersect transversally or cleanly. We are still
working in the toric setup, introduced in chapter 5, so we want both Lagrangians
to arise as torus �bers over interior points in the corresponding moment polytope.
The �rst section�s buildup is as follows:
Using K. Fukaya�s work [FOOO1] we extend the ideas about A∞-algebras (chap-
ter 3) and provide a purely algebraic description of A∞-bimodule structures. We
already clari�ed how �ltered A∞-algebras (Ci,m

i) are constructed out of one La-
grangian subtorus Li. These preceding results come into play since we aim to
discuss the notion of a left/right (C1,m

1)/(C0,m
0) A∞-bimodule. After this al-

gebraic groundwork we pick these concepts and try to organize the setup of two
Lagrangian submanifolds L0, L1 ⊂M in a (C1, C0) �ltered A∞-bimodule structure.
This is done by incorporating classic Floer theoretic concepts namely the counting
of stable broken trajectories connecting intersection points p ∈ L1 ∩ L0.
As before after this challenging preparatory work, namely to put geometry in an
algebraic dress, we are able to pro�t of its clear build up. Its de�ning A∞-bimodule-
relation is used to ask for possible coboundary operators necessary to de�ne a La-
grangian Floer Cohomology theory. As the headline proposes we again can use the
potential function PO as a tool to check if possible candidates for coboundary op-
erators actually square up to zero.
We even can further pro�t when properly analyzing the potential function PO.
As presented in section 6.2 we use the result of proposition 4.6, namely that we
are able to fully calculate PO(x; p) for Fano toric manifolds, and discuss how its
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derivatives can be used for concrete computations. It turns out that these can be
used to derive an expression for the Lagrangian Floer coboundary operator δb. For
general Fano toric manifolds M2n we �nd at least one Lagrangian subtorus L(p)
(for n = 2 we even get a continuum of tori) for which we thereof can compute its
Lagrangian Floer cohomology. Then relying on an important theorem of Fukaya
et al. (Theorem J in [FOOO1]) this knowledge allows to give an lower estimate on
the number of intersection points of L(p) and ψ(L(p)), for ψ ∈ Ham(M,ω) being
a Hamiltonian di�eomorphism, just depending on the Hofer norm ‖ψ‖.
As in many parts of the text we are again following the ideas and the work of K.
Fukaya et al. and rely to [FOOO1] and [FOOO2].

6.1.1 Algebraic Perception on A∞-bimodules

Assume �ltered A∞-algebras (Ci,m
i) over Λ0,nov(R) ≡ Λ0,nov (for the upcoming

algebraic considerations a speci�cation which ground ring R we are using is not
necessary) are given for i ∈ {0, 1}. Picking up and extending the ideas of chapter 3
we declare degree +1 operators

nl1,l0 : Bl1(C1[1])⊗Λ0,nov D[1]⊗Λ0,nov Bl0(C0[1])→ D[1] for li ≥ 0 . (6.1)

HereD[1] denotes the completion of a shifted, free, graded and �ltered Λ0,nov module⊕
m∈Z

Dm. As described in section 3.1.2, it is possible to complete here since

F λDm := T λDm (6.2)

de�nes an energy �ltration that is satisfying the properties of de�nition 3.3.
When additionally requiring the following �ltration preserving property

nl1,l0(F λ1(C1[1])m1 ⊗ ...⊗ F λl1 (C1[1])ml1 ⊗ F λ0(D[1])m0⊗

⊗F λ′1(C0[1])m
′
1 ⊗ ...⊗ F λ′l0 (C0[1])m

′
l0 ) ⊆ F

∑
i
λi+λ0+

∑
j
λ′j

(D[1])

∑
i
mi+m0+

∑
j
m′j+1

(6.3)

we can further complete the domain of nl1,l0 and thus extend it to a homomorphism
n̂l1,l0 between the complete spaces (symbolized by a " ·̂ " sign)

n̂l1,l0 : (
⊕
n,m

Bn(C1[1])⊗Λ0,nov D[1]⊗Λ0,nov Bm(C0[1]))̂ −→

(
⊕
n,m;

i+j=n+m−(l0+l1)

Bi(C1[1])⊗Λ0,nov D[1]⊗Λ0,nov Bj(C0[1]))̂ =: BDB .
(6.4)

Out of these we are then able to de�ne a bi-coderivation

d̂ : BDB → BDB . (6.5)

The operator has a comparably structure as the

d̂ i =
∑
k

m̂i
k : B̂(Ci[1])→ B̂(Ci[1]) (6.6)
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de�ned from mi in section 3.1.2. Precisely speaking it is de�ned as

d̂(y1,1⊗...⊗ y1,l1 ⊗ x⊗ y0,1 ⊗ ...⊗ y0,l0) :=(∑
i,j

(−1)

i∑
m=1

(deg y1,m+1)
y1,1 ⊗ ...⊗ y1,i⊗

⊗ nl1−i,j(y1,i+1 ⊗ ...⊗ y1,l1 ⊗ x⊗ y0,1 ⊗ ...⊗ y0,j)⊗ y0,j+1 ⊗ ...⊗ y0,l0

)
+

+ d̂ 1(y1,1 ⊗ ...⊗ y1,l1)⊗ x⊗ y0,1 ⊗ ...⊗ y0,l0+

+ (−1)

l1∑
m=1

(deg y1,m+1)+deg x+1
y1,1 ⊗ ...⊗ y1,l1 ⊗ x⊗ d̂ 0(y0,1 ⊗ ...⊗ y0,l0) .

(6.7)

De�nition 6.1

(D,n) is called a (C1, C0) �ltered A∞-bimodule if d̂ is a coboundary operator
for the complex BDB that is

d̂ ◦ d̂ = 0 (6.8)

Further speci�cations for A∞-bimodules are possible to declare:

(i) Being unital �ltered , that is for units ei of (Ci,m
i):

n1,0(e1 ⊗ x) = (−1)deg yn0,1(x⊗ e0) = x ;

nl1,l0(· · · ⊗ ei ⊗ · · ·) = 0 for l1 + l0 ≥ 2
(6.9)

(ii) Assume one has a free gradedRmoduleD and un�lteredA∞-algebras (Ci,m
i).

One calls (D,n) a (C1, C0) un�ltered A∞-bimodule if analogously to above one
gets

d̂ ◦ d̂ = 0 (6.10)

(iii) Comparably to the R-reduction described in section 3.1.2 and the way we
construct A∞-bimodules for concrete geometric setups later on, we can assume
for our cases that

D ∼= D ⊗R Λ0,nov (6.11)

and that
nl1,l0 := nl1,l0 mod Λ+

0,nov (6.12)

does not contain elements of R[e, e−1]. The thereby arising (C1, C0) un�ltered
A∞-bimodule (D,n) is called the R-reduction of (D,n). Here (Ci,m

i) denotes
the R-reduced un�ltered A∞-algebra of (Ci,m

i).

(iv) (D,n) is called G-gapped if the homomorphisms nl1,l0 decompose as

nl1,l0 =
∑
i

eniT λinl1,l0,i (6.13)
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for (λi, ni) ∈ G for G ⊂ R≥0 × 2Z being a submonoid satisfying condition
3.1. When describing geometry and then assigning the symplectic volume to
λi and the Maslov index to 2ni we get that all the geometrically constructed
A∞-bimodules are G-gapped.

(v) Remark that there is a notion of �ltered A∞-bimodule homomorphisms

D
ϕ→ D′ . (6.14)

We do not discuss the details here since they are not needed in the following
and refer the reader to section 3.7.2. of [FOOO1].

The precise way of de�ning these concepts is very similar to how we declared them
in section 3.1.2. We refer to De�nition 3.7.5 of [FOOO1] for an exact description.

6.1.2 From Geometry to A∞-bimodules

As outlined in the motivation of this chapter, we �rst assume that the pair of
connected Lagrangian submanifolds L0, L1 in (M,ω) intersects transversally.
We consider pairs (l, w) de�ned as follows:

• l is a path connecting L0, L1 that is

{l ∈ C0([0, 1],M) | l(0) ∈ L0, l(1) ∈ L1} =: Ω(L0, L1) . (6.15)

For a �xed base path l0 we take Ω(L0, L1; l0) ⊂ Ω(L0, L1) as the connected compo-
nent containing l0.
Additionally we make the choice:

• w ∈ C0([0, 1]2,M) is a path in the path space satisfying the boundary condi-
tions

w(s, 0) ∈ L0, w(s, 1) ∈ L1 for all s ∈ [0, 1]

w(0, t) = l0(t), w(1, t) = l(t) for all t ∈ [0, 1] .
(6.16)

The space Ω̃(L0, L1; l0) (often denoted as theNovikov covering space) contains equiv-
alence classes [l, w] whereas the equivalence relation (l, w) ∼ (l, w′) is de�ned as
follows:
For the concatenation w#w′ (w(s, t) := w(1 − s, t) for w,w′ as in (6.16)) we can
calculate its symplectic energy via

Iω(w#w′) :=

∫
[0,1]2

(w#w′)∗ω . (6.17)

With
Iµ(w#w′) (6.18)

we want to denote the Maslov index (see section 2.2) of the bundle pair

(w#w′)∗TM , (w#w′)∗0TL0 t (w#w′)∗1TL1 (6.19)



6.1. LAGRANGIAN FLOER COHOMOLOGY FOR PAIRS L0, L1 103

for (w#w′)i(s) := (w#w′)(s, i) (i ∈ {0, 1}).
So we project pairs (l, w), (l, w′) with l = l′ and

Iω(w#w′) = Iµ(w#w′) = 0 (6.20)

into the equivalence class [l, w]. These shall form the elements of Ω̃(L0, L1; l0).
On this set one considers an action functional

A : Ω̃(L0, L1; l0)→ R

[l, w] 7→
∫
w∗ω .

(6.21)

We refer the reader to section 2.3. of [FOOO1] where the well-de�nedness of this
functional A is proven. The set of critical points of A is denoted by CrA(L0, L1; l0).
Due to how A is de�ned one deduces that this set consists of elements of the form
[lp, w] for constant paths lp(t) ≡ p for p ∈ L0 ∩ L1.
Our aim now is to de�ne a free graded and �ltered Λ0,nov module D out of these
ingredients.
So �rst set D̂F (L0, L1; Λ0,nov) ≡ D̂F as the completion of

(
⊕
l0

⊕
[lp,w]∈

CrA(L0,L1;l0)

Q[lp, w])⊗Q ΛR=Q
nov . (6.22)

A �ltration F on D̂F is declared by

F λ′D̂F (L0, L1; Λnov) (6.23)

containing elements with

λ+

∫
w∗ω ≥ λ′ (6.24)

for λ being the superscript of the formal parameter T . Recalling the meaning of
the parameter λ for the construction of the A∞-algebra in section 5.3, namely the
characterization of the energy of the attached pseudo-holomorphic curves, we see
that (6.24) can be interpreted as an energy bound from below.

We additionally de�ne an equivalence relation on D̂ and denote

D̂F (L0, L1; Λnov)/ ∼ =: DF (L0, L1; Λnov) ≡ DF . (6.25)

Elements of the form eµT λ[lp, w], eµ
′
T λ
′
[lp′ , w

′] project to the equivalence class[
eµT λ[lp, w]

]
≡︸︷︷︸

abuse of
notation

eµT λ[lp, w] (6.26)

if the following equalities are ful�lled:

(i) p = p′

(ii) λ+
∫
w∗ω = λ′ +

∫
w′∗ω
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(iii) 2µ+ µ([lp, w]) = 2µ′ + µ([lp′ , w
′])

The way how to de�ne a Maslov index µ([lp, w]) is described in section 2.2.2. of
[FOOO1] and can be summarized as de�ning it as the Maslov index of the bundle
pair

(w∗TM, λw) . (6.27)

Here the Lagrangian subbundle λw → ∂[0, 1] is de�ned as

λw(s, 0) = Tw(s,0)L0; λw(0, t) = section λ0 in l∗0(
⋃
p

{oriented Lagr. in TpM})

λw(s, 1) = Tw(s,1)L1; λw(1, t) = path αp in {oriented Lagr. in TpM} .
(6.28)

It is possible to show that µ([lp, w]) does not depend on the chosen αp. The refer-
ence section λ0 is �xed once in order to provide an absolute grading for the Floer
complex. We do not this fact for following discussion and since the chapter�s pur-
pose is to provide a basic impression for A∞-bimodules describing geometry, the
interested reader is referred to chapter 5.1. of [FOOO1].

Let us return to the de�nition of the equivalence relation ∼. Point (ii) is neces-
sary to assign the described �ltration F to DF . The searched Λ0,nov module D is
de�ned as the submodule with non-negative total energy that is

F 0DF (L0, L1; Λnov) =: D(L0, L1; Λ0,nov) ≡ D . (6.29)

Point (iii) is used to declare a grading given by

2µ+ µ([lp, w]) (6.30)

for elements in D. For the �ltration we take F λ′D containing elements with expo-
nents ≥ λ′ of the generator T .
As proclaimed in the algebraic part of this section, D can be seen as a complete,
free graded and �ltered Λ0,nov module.

Using the ideas of section 5.3 namely taking (H∗(Li,Λ
R
0,nov),m

i) as the underly-
ing A∞-algebras allows us to de�ne the operators nl0,l1 as a mapping

nl1,l0 : Hr1(L1,Λ
R
0,nov)⊗ ...⊗Hrl1 (L1,Λ

R
0,nov)⊗D(L0, L1; Λ0,nov)⊗

⊗Hr′1(L0,Λ
R
0,nov)⊗ ...⊗H

r′l0 (L0,Λ
R
0,nov) −→ D(L0, L1; Λ0,nov)

(6.31)

de�ned via

eµ
(1)
1 T λ

(1)
1 α

(1)
1 ⊗ ...⊗ e

µ
(1)
l1 T λ

(1)
l1 α

(1)
l1
⊗ eµT λ[lp, w]⊗ eµ

(0)
1 T λ

(0)
1 α

(0)
1 ⊗ ...⊗ e

µ
(0)
l0 T λ

(0)
l0 α

(0)
l0

7−→∑
[lp,w]∈

CrA(L0,L1;l0)

#( Mk1,k0(L0, L1; [lp, w], [lq, w
′];
→
α

(0)
,
→
α

(1)︸ ︷︷ ︸
Mk1,k0

(···)

)s) eµ
′
T λ
′
[lq, w

′]

(6.32)
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for λ′ =
l1∑
i=1

λ
(1)
i + λ+

l0∑
i=1

λ
(0)
i and µ′ =

l1∑
i=1

µ
(1)
i + µ+

l0∑
i=1

µ
(0)
i .

For an exact de�nition of the appearing moduli spaceMk1,k0(· · ·) we refer to Propo-
sition 3.7.26. of [FOOO1], where the authors discuss important issues namely:

• Ml1,l0(· · ·) is compact

• ev is weakly submersive, strongly continuous, smooth

• Ml1,l0(· · ·) can be equipped with an oriented Kuranishi structure

In Proposition 3.7.36. they further derived a formula to calculate its virtual dimen-
sion and showed that it is possible to �nd a transversal compatible multisection in
order to perturbM→Ms. Since compactness is guaranteed we can actually count
the number of (weighted) points of the 'zero' dimensional moduli spaces.

For our purpose it is enough to think ofMl1,l0(L0, L1; [lp, w], [lq, w
′]) as the mod-

uli space of marked stable broken pseudo-holomorphic curves (Fig. 6.1)

u : R× [0, 1]→M (6.33)

satisfying certain boundary conditions described in chapter 3.7. of [FOOO1].

The additional speci�cationMl1,l0(...;
→
α

(0)
,
→
α

(1)
) means that we only regard curves

whose images of the marked points attach

a
(i)
j = PD(α

(i)
j ) ∈ H

n−deg α
(i)
j

(Li,R). (6.34)

Remark that requiring such constraints reduces the dimension ofM by

k0∑
j=1

deg a
(0)
j +

k1∑
j=1

deg a
(0)
j . (6.35)

Adopting Theorem 3.7.21. of [FOOO1] we get:

Figure 6.1: VisualizingMk1,k0(L0, L1; [lp, w], [lq, w
′];
→
α

(0)
,
→
α

(1)
)
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Theorem 6.1

The constructed (D(L0, L1; ΛR
0,nov), n) is a right (H∗(L0,Λ

R
0,nov),m

0) and left
(H∗(L1,Λ

R
0,nov),m

1) unital �ltered A∞-bimodule with units ei = PD([Li]).

Remark 6.1. We �nally remark that the requirement of L0, L1 being transversal
can be replaced by requiring that the Lagrangians intersect cleanly. See De�nition
3.7.48. of [FOOO1] for the meaning of clean intersections, here we just remark that
the case of

L0 = L1 ≡ L (6.36)

is covered by this de�nition.
In Theorem 3.7.72. of [FOOO1] Fukaya et al. showed that under these assumption
an A∞-bimodule structure can be built (similarly as above by counting marked stable
broken Floer trajectories).
Concerning later considerations, where we present a method to actually compute
the Lagrangian Floer Cohomology (see section 6.2.1), we highlight that the setup of
one Lagrangian L ⊂ M can either be put in the algebraic language of A∞-algebras
(see section 5.3) or as remarked here into notion of A∞-bimodules. We pick up this
aspect again in Remark 6.2 (ii) where we discuss how these structures are related
and, even more important for our intention, easily see that the two thereof arising
Lagrangian Floer Cohomologies are actually identical.

6.1.3 From A∞-bimodules to a Lagrangian Floer Cohomology

As in section 3.2.1 and 3.2.2 we are able to follow two di�erent approaches in order
to de�ne a Lagrangian Floer Cohomology theory. Tying up the situation of theorem
6.1, we therefore try to declare a coboundary operator out of the given left, right

(H∗(L1,Λ
R
0,nov),m

1) , (H∗(L0,Λ
R
0,nov),m

0) (6.37)

�ltered A∞-bimodule (D(L0, L1; ΛR
0,nov), n). As in section 3.2 this way of approach-

ing is only possible if the underlying A∞-algebras are at least weakly unobstructed
(see De�nition 3.8).
The "strict" approach again asks for possible deformations of the maps {nl1,l0}l1,l0≥0

by using strict Maurer-Cartan solutions, whereas in the weak case the potential func-
tions POi are used to check whether candidates for possible coboundary operators
really square up to zero.
Remark that the upcoming concepts work for general A∞-bimodules not just the
one of theorem 6.1. Since we already presented the transfer of formulating the
"L0, L1 ⊂M" setup in an algebraic A∞-bimodule fashion, we work with these con-
structed data. This helps to keep the geometry in mind when doing the algebra.

Strict unobstructedness via deformations:

We want to make use of strict (meaning d̂i(ebi) = 0) Maurer-Cartan solutions
(bounding cochains)

bi ∈ H1(Li,Λ
R
0,nov) (6.38)
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(if existing!) for i ∈ {0, 1}.
For general

bi ∈ H1(Li,Λ
R
0,nov) with bi ≡ 0 mod ΛR

0,nov (6.39)

one deforms the given A∞-bimodule structure via �rst replacing the A∞-algebra
homomorphisms {m0

l }l≥0 and {m1
l }l≥0 by

mi = {mi
l} → {m

i,bi
l } = mi,bi (6.40)

as described in section 3.2.1. Then one further performs a replacement of the A∞-
bimodule homomorphisms {nl1,l0}l1,l0≥0 via

nl1,l0(y1,1, ..., y1,l1 , x, y0,1, ..., y0,l0)→ b1nb0l1,l0(y1,1, ..., y1,l1 , x, y0,1, ..., y0,l0) :=

=
∑

k0,...,kl1
k′0,...,k

′
l0

nl1+
∑
ki,l0+

∑
k′i

(b1, ..., b1︸ ︷︷ ︸
k0

, y1,1, b1, ..., b1︸ ︷︷ ︸
k1

, ..., b1, ..., b1︸ ︷︷ ︸
kl1−1

, y1,l1 , b1, ..., b1︸ ︷︷ ︸
kl1

, x,

b0, ..., b0︸ ︷︷ ︸
k′0

, y0,1, b0, ..., b0︸ ︷︷ ︸
k′1

, ..., b0, ..., b0︸ ︷︷ ︸
k′l0
−1

, y0,l0 , b0, ..., b0︸ ︷︷ ︸
k′l0

) ≡

≡n(eb1y1,1e
b1 , ..., eb1y1,l1e

b1 , x, eb0y0,1e
b0 , ..., eb0y0,l0e

b0) .

(6.41)

Remark that the maps b1nb0 ,m0,b0 ,m1,b1 (as in (6.7)) induce an operator

b1 d̂ b0 : BDB → BDB (6.42)

via

b1 d̂ b0(y
1
⊗ x⊗ y

0
) :=

=
∑

(−1)···y1,1 ⊗ ...⊗ y1,i ⊗ b1nb0l1−i,j(· · · ⊗ x⊗ · · ·)⊗ y0,j+1 ⊗ ...⊗ y0,l0+

+d̂ 1,b1y
1
⊗x⊗ y

0
+ (−1)···y

1
⊗ x⊗ d̂ 0,b0y

0
.

(6.43)

As in the proof of proposition 3.1 by directly comparing

0 = (d̂ ◦ d̂)(eb1y1,1e
b1 ⊗ ...⊗ eb1y1,l1e

b1 ⊗ x⊗ eb0y0,1e
b0 ⊗ ...⊗ eb0y0,l0e

b0) (6.44)

with
(b1 d̂ b0 ◦ b1 d̂ b0)(y1,1 ⊗ ...⊗ y1,l1 ⊗ x⊗ y0,1 ⊗ ...⊗ y0,l0) (6.45)

yields

b1 d̂ b0 ◦ b1 d̂ b0 = 0 . (6.46)

This means that (D(L0, L1; Λ0,nov),
b1nb0) is again a

(H∗(L1,Λ
R
0,nov),m

1,b1) , (H∗(L0,Λ
R
0,nov),m

0,b0) (6.47)
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�ltered A∞-bimodule.

When additionally requiring

bi ∈Mstrict(H
∗(Li,Λ

R
0,nov)), (6.48)

that is b0, b1 being strict Maurer-Cartan solutions the A∞-bimodule de�ning equa-
tion, (6.7) boils down to

0 = (d̂ ◦ d̂)(eb1xeb0)
deg b+1=2︷︸︸︷

=

= d̂

(
eb1n(eb1xeb0)eb0 + d̂1(eb1)⊗ x⊗ eb0 + (−1)deg x+1eb1 ⊗ x⊗ d̂1(eb0)

)
=︸︷︷︸

d̂i(ebi )=0

= n(eb1n(eb1xeb0)eb0) .

(6.49)

In summary we get that the degree +1 operator

δb1,b0(x) := n(eb1xeb0) (6.50)

can be seen as a coboundary operator (δb1,b0 ◦ δb1,b0 = 0)

δb1,b0 : D[1]→ D[1] . (6.51)

Weak unobstructedness via comparison of PO0 and PO1:

Comparably as in section 3.2.2 we can however follow a bit less restrictive ap-
proach for declaring a coboundary operation. This is done by considering a weak-
ened version of d̂i(ebi) = 0, namely we search weak Maurer-Cartan solutions, that
is elements

bi ∈ H1(Li,Λ
R
0,nov) (6.52)

ful�lling
mi(ebi) = ci · e · ei for ci ∈ Λ

+(0)
0,nov(R) . (6.53)

Since ei (i = 0, 1) denote the units of the underlying A∞-algebras, this usage of
elements of

Mweak(C) (6.54)

is in general, for not further speci�ed (C1, C0) A∞-bimodules, only possible if they
are considered to be unital. We are describing geometry in an A∞-bimodule fashion
and due to Theorem 6.1, stating that PD[Li] serve as units, this weak approach is
justi�ed for our purpose.
Recall (3.126) namely that these weak Maurer-Cartan solutions form the domain of
the potential functions

POi :Mweak(H
∗(Li,Λ

R
0,nov))→ Λ

+(0)
0,nov(R)

bi 7→ ci
(6.55)
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de�ned by

mi(ebi) = POi(bi) · e · ei . (6.56)

Declaring an operator

δb1,b0 : D(L0, L1; ΛR
0,nov)→ D(L0, L1; ΛR

0,nov)

x 7→
∑
k1,k0

nk1,k0(b1, ..., b1︸ ︷︷ ︸
k0

, x, b0, ..., b0︸ ︷︷ ︸
k0

)

≡ n(eb1xeb0)

(6.57)

similarly de�ned as in (6.50) but now for

bi ∈Mweak(H
∗(Li,Λ

R
0,nov)) (6.58)

we try to derive an equation that links δb1,b0 with POi.
As the headline of this chapter states we aim to describe applications of the po-
tential functions. Here a comparison of PO0,PO1 can be used in order to check if
δb1,b0 serves as a coboundary operator.

According to the de�nition of the bi-coderivation

d̂ : B̂(C1[1])⊗̂ΛR
0,nov

D[1]⊗̂ΛR
0,nov

B̂(C0[1])→B̂(C1[1])⊗̂ΛR
0,nov

D[1]⊗̂ΛR
0,nov

B̂(C0[1])

y
1
⊗ x⊗ y

0
7→
∑
i,j

(−1)···y1,1 ⊗ ...⊗ y1,i ⊗ nl1−i,j(· · ·

· · · ⊗x⊗ · · ·)⊗ y0,j+1 ⊗ ...⊗ y0,l0+

+ d̂1y
1
⊗ x⊗ y

0
+ (−1)···y

1
⊗ x⊗ d̂0y

0

(6.59)

we get that the image of d̂ ◦ d̂ in the component

B̂0(C1[1])⊗̂ΛR
0,nov

D[1]⊗̂ΛR
0,nov

B̂0(C0[1]) (6.60)

is given by n ◦ d̂ (recall d̂i =
∞∑
k=0

m̂i
k with m̂i

k = 0 for k > n). Using the required

A∞-bimodule relation (6.8) we thus deduce

d̂ ◦ d̂ = 0⇒ n ◦ d̂ = 0 . (6.61)

For x ∈ D(L0, L1; ΛR
0,nov) and the fact

(−1)deg bi+1 = (−1)2 = 1 (6.62)
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we continue as follows:

0 = n(d̂(eb1xeb0))

(6.59)︷︸︸︷
=

= n(eb1n(eb1xeb0)eb0) + n(d̂1(eb1)xeb0) + (−1)deg x+1n(eb1xd̂0(eb0))

δb1,b0 (·):=n(eb1 ·eb0 )︷︸︸︷
=

= (δb1,b0 ◦ δb1,b0)(x) + n(d̂1(eb1)xeb0)− (−1)deg xn(eb1xd̂0(eb0))

(3.102)︷︸︸︷
=

= (δb1,b0 ◦ δb1,b0)(x) + n(eb1m1(eb1)eb1xeb0)− (−1)deg xn(eb1xeb0m0(eb0)eb0)

(6.56)︷︸︸︷
=

= (δb1,b0 ◦ δb1,b0)(x) + n(eb1PO1(b1) · e · e1e
b1xeb0)+

− (−1)deg xn(eb1xeb0PO0(b0) · e · e0e
b0)

(6.9)︷︸︸︷
=

= (δb1,b0 ◦ δb1,b0)(x) + PO1(b1) · e · x− (−1)2deg x PO0(b0) · e · x
(6.63)

As proclaimed the potential function can be used to check the property if δb1,b0
serves as a coboundary operator for D(L0, L1; ΛR

0,nov):

δb1,b0(δb1,b0(x)) = (PO0(b0)−PO1(b1)) · e · x (6.64)

De�ning the Lagrangian Floer Cohomology:

De�nition 6.2

For bi ∈ H1(Li,Λ
R
0,nov) with bi ≡ 0 mod ΛR

0,nov (i ∈ {0, 1}) satisfying either the
strict

•
POi(bi) = 0 (6.65)

or the weak condition

•
PO0(b0) = PO1(b1). (6.66)

the Lagrangian Floer Cohomology for the left/right (H∗(L1,Λ
R
0,nov), H

∗(L0,Λ
R
0,nov))

�ltered unital A∞-bimodule (D(L0, L1; ΛR
0,nov), n) is de�ned by

HF ((L1, b1), (L0, b0); ΛR
0,nov) := Ker δb1,b0/Im δb1,b0 . (6.67)

Remark 6.2. (i) As already remarked at the beginning of this section 6.1.3 a
Lagrangian Floer Cohomology can in general be de�ned for (unital) �ltered A∞-
bimodules as long as the underlying A∞-algebras are (weakly) unobstructed, that
is

Mstrict/weak(H
∗(Li,Λ

R
0,nov)) 6= ∅. (6.68)



6.1. LAGRANGIAN FLOER COHOMOLOGY FOR PAIRS L0, L1 111

The preceding de�nition is formulated more speci�c for not drifting away from our
algebraic view on geometry constructed in section 6.1.2.

(ii) We are picking up the ideas brought up in Remark 6.1. For the most trivial
case of only one Lagrangian submanifold

L0 = L1 = L and thus m0 = m1 = m . (6.69)

the described theory about A∞-algebras (see chapter 3) can be boiled up to an A∞-
bimodule description (remark that L and L intersect cleanly).
Via setting

nl1,l0 := ml1+l0+1 (6.70)

the A∞-algebra (H∗(L,ΛR
0,nov),m) extends to an left (H∗(L,ΛR

0,nov),m) and right
(H∗(L,ΛR

0,nov),m) A∞-bimodule (H∗(L,ΛR
0,nov),m). Due to Proposition 3.7.75. of

[FOOO1] this A∞-bimodule coincides with the one arising from the general con-
struction for cleanly intersecting Lagrangian submanifolds outlined in remark 6.1.
This in turn implies

d̂(y
1
⊗ x⊗ y

0
) =

∑
i,j

(−1)···y1,1 ⊗ ...⊗ y1,i ⊗ml1−i+j+1(· · · ⊗ x⊗ · · ·)⊗

⊗ y0,j+1 ⊗ ...⊗ y0,l0 + d̂1y
1
⊗ x⊗ y

0
+ (−1)···y

1
⊗ x⊗ d̂0y

0

≡d̂0(y
1
⊗ x⊗ y

0
) = d̂1(y

1
⊗ x⊗ y

0
)

(6.71)

for
y1,k, y0,l, x ∈ H∗(L,ΛR

0,nov) with k, l > 0 . (6.72)

Additionally we can use
PD[L] = e0 = e1 = e (6.73)

as A∞-algebra/A∞-bimodule units and if (H∗(L,ΛR
0,nov),m) is (strictly/weakly) un-

obstructed a (strict/weak) Maurer-Cartan solution

b0 = b1 ≡ b (6.74)

that serves to de�ne a coboundary operator

δb0,b1(·) = δb,b(·)︸ ︷︷ ︸
see (3.108)

= δb(·)︸︷︷︸
see (3.119)

= m(eb · eb) (6.75)

on H∗(L,ΛR
0,nov) out of the A∞-algebra (H∗(L,ΛR

0,nov),m).
With the help of the trivial identity

PO0(b) = PO1(b) = PO(b) (6.76)

and due to (6.64) we know that

δ′b,b(·) := n(eb · eb) (6.77)
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is a coboundary on H∗(L,ΛR
0,nov) de�ned out of the A∞-bimodule (H∗(L,ΛR

0,nov),m).
Further

m(eb · eb) =
∑
l1,l0≥0

ml1+l0+1(b, ..., b︸ ︷︷ ︸
l1

, x, b, ..., b︸ ︷︷ ︸
l0

) =

=
∑
l1,l0≥0

nl1,l0(b, ..., b︸ ︷︷ ︸
l1

, x, b, ..., b︸ ︷︷ ︸
l0

) =

= n(eb · eb)

(6.78)

shows that the coboundary operators δb,b, δ
′
b,b de�ned on H∗(L,ΛR

0,nov) and thus the
Lagrangian Floer Cohomology

HF (L, b; ΛR
0,nov)︸ ︷︷ ︸

see (5.127)

and HF ((L, b), (L, b); ΛR
0,nov)︸ ︷︷ ︸

see Def. 6.2

(6.79)

coincide.

6.2 Examination of derivatives of PO

The motivation for the second section of this chapter, which tries to describe how
to draw out possible applications of the beforehand developed concepts, is to work
out how derivatives of the potential function PO can be used to compute the La-
grangian Floer Cohomology.
With this knowledge in mind we are then well prepared to handle (non-)displaceability
questions for Lagrangian submanifolds.
Remark that by abuse of notation that we write Λ0, Λ+ for

Λ0(C) , Λ+
0 (C) (6.80)

respectively.
Recall that for a compact, orientable n dimensional Lagrangian subtori

T n ∼= L(p) = µ−1(p) for p ∈ ∆̊ (6.81)

in a compact toric 2n dimensional manifoldM2n (always assumed to be Fano in the
following), due to the embedding

H1(L(p); Λ+) ↪→Mweak(L(p)) for p ∈ ∆̊ (6.82)

derived in Proposition 5.5, the abstractly introduced potential function PO (see
De�nition 3.126) can be restricted and then be written as

PO : H1(L(p); Λ+)→ Λ+ . (6.83)

By using {e1, ..., en} as an integral basis for H1(L(p); Z) ∼= Zn (recall that we take
it as the dual basis to the given integral basis {e∗1, ..., e∗n} of the lattice N ∼= Zn
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determining the underlying fan, Σ in N ⊗ R, of the toric manifold M), we further
have ⋃

p∈∆̊

H1(L(p); Λ+) ∼= (Λ+)n × (∆̊) . (6.84)

Hence we get a coordinate description

PO(b =
n∑
i=1

xiei︸ ︷︷ ︸
∈ H1(L(p);Λ+)

) = PO(x; p) = PO(x1, ..., xn︸ ︷︷ ︸
∈(Λ+)n

; p1, ..., pn︸ ︷︷ ︸
p∈∆̊

) . (6.85)

For p ∈ ∆̊ �xed we regard POp(x) := PO(x; p) as a function depending on
x = (x1, ..., xn).

6.2.1 Computation of HF ((L(p), b), (L(p), b); Λ0)

Adopting the language and especially the essence of Theorem 4.10. of [FOOO2],
whose proof can be found in section 13 of the same article, we have the following:

Def./Prop. 6.1

A n dimensional Lagrangian torus �ber L(p0) ∼= T n (p0 ∈ ∆̊) in a 2n dimensional
compact Fano toric manifold M2n is called balanced if

HF ∗((L(p0), ρ, b), (L(p0), ρ, b); Λ0) ∼= H∗(T n; Λ0) . (6.86)

There is at least one such balanced Lagrangian torus �ber in M .
Especially in the case n = 2 we have a complete description of the Lagrangian
Floer coboundary operator

mb0
1 = δb0 : H∗(L(p); Λ0)→ H∗(L(p); Λ0) (6.87)

in terms of
∂POp

∂xi
|b=b0 for i ∈ {1, 2} (6.88)

and p contained in a connected subset IPO ⊂ ∆̊ whose form is depending on
PO. Precisely speaking for bases

{e0} of H0(L(p),Z) ∼= Z
{e1, e2} of H1(L(p),Z) ∼= Z2

{e12 = e1 ∪ e2} of H2(L(p),Z) ∼= Z
(6.89)

we have

δb0(e0) = 0

δb0(ei) =
∂POp

∂xi
|b=b0e0

δb0(e12) =
∂POp

∂x1

|b=b0e2 −
∂POp

∂x2

|b=b0e1 .

(6.90)



114 CHAPTER 6. PROPERTIES OF PO - RELATION TO MATHEMATICS

Remark 6.3. We in particular highlight the n = 2 case here since, in contrast to
the former general method of locating at least one balanced torus �ber L(p0), we
even get continuum of 2 dimensional Lagrangian tori L(p) for which we actually
can compute its Lagrangian Floer Cohomology.
Both phenomena are related in a way such that (6.90) holds for arbitrarily n, pre-
cisely speaking we have

δb0(e0) = 0

δb0(ei) =
∂POp

∂xi
|b=b0e0

δb0(ei ∪ ej) =
∂POp

∂xi
|b=b0ej −

∂POp

∂xj
|b=b0ei

δb0(ei ∪ ej ∪ ek) =
∂POp

∂x1

|b=b0e2 ∪ e3 −
∂POp

∂x2

|b=b0e1 ∪ e3+

+
∂POp

∂x3

|b=b0e1 ∪ e2 + "extra terms"

· · ·
δb0(e1 ∪ · · · ∪ en) = ??? .

(6.91)

for i, j, k ∈ {1, ..., n} and {e1, ..., en} being a basis of H1(L(p) ∼= T n,Z) ∼= Zn.
Problems already arise when one wants to compute δb0(ei ∪ ej ∪ ek) for Lagrangian
tori of dimension n ≥ 3, namely we yet do not know how to compute the appearing
"extra terms".
We refer to Remark 6.4 where we again pick up this unsolved di�culty, show where
exactly the problems arise and give a suggestion for further studies how to perhaps
solve it once.

For proving the existence of a balanced Lagrangian torus the reader is referred to
Proposition 4.7. of [FOOO2].
Our focus lies more on highlighting how an appropriate interior point p0 ∈ ∆̊ (and
thus L(p0)) can actually be detected and especially how to construct a (weak)
Maurer-Cartan solution

b ∈ H1(L(p0); Λ+) (6.92)

thereof. In this context we further try to clarify why there is this extra speci�cation

ρ : H1(L(p0); Z)→ C∗ (6.93)

in
HF ((L(p0), ρ, b), (L(p0), ρ, b); Λ0) . (6.94)

To be more precise the stated Proposition 4.7. states that for a compact Fano toric
manifold it exists p0 ∈ ∆̊ so that one �nds

y0 = (y01 , ..., y0n) ∈ Λn
0 − {0} (6.95)

such that
∂POp0

∂yi
|y=y0 ≡ 0 (6.96)
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for i ∈ {1, ..., n} (remark that we can interpret POp0 as a function depending on y

when setting yj := exj =
∞∑
k=0

xkj
k!
∈ Λ0 as in (5.171)).

For such an element y0 we de�ne

x0i = x0
0i︸︷︷︸
∈C

+ x+
0i︸︷︷︸
∈Λ+

∈ Λ0 (6.97)

via

y0i = ex
0
0i

+x+
0i = ex

0
0i︸︷︷︸

C∗

∞∑
k=0

(x+
0i

)k

k!︸ ︷︷ ︸
∈Λ0

. (6.98)

Since x0i is unique up to addition of 2πiZ we �x the convention that its imaginary
part is contained in [0, 2π) and get uniqueness.
By using the basis {e1, ..., en} (dual to the given basis {e∗1, ..., e∗n} ofN) ofH1(L(p0); Z)
we get an element

x0 =
n∑
i=1

x0iei ∈ H1(L(p0); Λ0) . (6.99)

Remark that y0i ∈ Λ0 can be decomposed as

y0i = y0
0i︸︷︷︸
∈C∗

+ y+
0i︸︷︷︸
∈Λ+

∈ Λ0 . (6.100)

In the case y0
0i

= 1 for all i the construction above yields that x0i ∈ Λ+ implying
that (6.99) already de�nes a weak Maurer-Cartan solution

b =
n∑
i=1

x0iei ∈ H1(L(p0); Λ+) ↪→︸︷︷︸
Prop. 5.5

Mweak(L(p)) . (6.101)

Unfortunately y0
0i

= 1 and therefore x0
0i

= ln(y0
0i

) = 0 does not hold in general. This
is the point where the homomorphism

ρ : H1(L(p0); Z)→ C∗

e∗i 7→ y0i

(6.102)

comes into play. It allows to "twist" the A∞-algebra via the replacement

mk,β → mρ
k,β := ρ(∂β) ·mk,β . (6.103)

In section 12 of [FOOO2] it is proven that

• (H∗(L(p); Λ0),mρ) is a �ltered A∞-algebra with unit PD[L(p)].

• We haveH1(L(p); Λ+) ↪→Mweak((H
∗(L(p); Λ0),mρ)) and therefore the twisted

potential function
POp

ρ : H1(L(p); Λ+)→ Λ+ (6.104)

is de�ned.
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• For x0
0i

= ln(y0
0i

) the identity

POp0
ρ (

n∑
i=1

( x0i − x0
0i︸ ︷︷ ︸

∈H1(L(p0);Λ+)

)ei) = POp0(
n∑
i=1

x0i︸︷︷︸
∈H1(L(p0);Λ0)

ei) (6.105)

provides that the potential function extends to a function de�ned on

H1(L(p0); Λ0) ↪→Mweak(L(p0)) (6.106)

and thus

POp0 : (Λ0)n → Λ+ (6.107)

is de�ned.

In summary we want to highlight the essence of the considerations of the last pages.
For elements of the form

b :=
n∑
i=1

x0iei ∈ H1(L(p0); Λ0) (6.108)

for y0i = ex0i satisfying (6.96), we know that Lagrangian Floer Cohomology is
de�ned (since b is a weak Maurer-Cartan solution).
Even more we get that HF ∗((L(p0), ρ, b), (L(p0), ρ, b); Λ0) is non-trivial, meaning
that we have an isomorphism of the form (6.86) that justi�es L(p0) to be called
balanced.
This non-triviality statement can be seen as follows:

Proof of Proposition 6.1 : For the following we always pretend that the starting
equation

∂POp

∂xi
|b=b0 =

∂POp

∂yi
|b=b0 · yi (6.109)

(= 0 for arbitrary dimensions (see (6.96)) or more general ∈ Λ+ for the n = 2 case
(see (6.90))) gives rise to a b0 ∈ H1(L(p0); Λ+) meaning that we do not have to
worry about the stated twisting process m → mρ. The proof would work anal-
ogously without this requirement but appears less transparent since, due to the
arising ρ terms, notations get more complicated. In the presented examples of
section 6.2.2 we are always allowed to choose b0 = 0 ∈ H1(L(p0); Λ+). Hence for
our purposes this simpli�cation is justi�ed but the interested reader is referred to
section 13 of [FOOO1] for details.

For such a b0 we clearly have δb0(e0) = 0, since Hk(Tn; Λ0) = 0 for k < 0, for
e0 ≡ PD([L(p)]) being a generator of H0(L(p); Λ0).

For general n ∈ N we continue by calculating

δb0 : H1(L(p); Λ0)→ H0(L(p); Λ0)
ei 7→ · · · e0

(6.110)
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for i ∈ {1, ..., n} and {e1, ..., en} denoting a basis of H1(Tn; Λ0).
Recall the de�ning equation for the potential function

PO(b) · PD([L(p)])︸ ︷︷ ︸
= e0

= m(eb) =
∞∑
k=0

mk(b, ..., b) . (6.111)

For a �xed interior point p0 ∈ ∆̊ take the derivatives with respect to xi evaluated

at b0 (recall b =
n∑
i=1

xiei)

∂POp0

∂xi
|b=b0 · e0 =

∂

∂xi
|b=b0

∞∑
k=0

mk(b, ..., b) =

=
∞∑

k1,k2=0

mk(b0, ..., b0︸ ︷︷ ︸
k1

, ei, b0, ..., b0︸ ︷︷ ︸
k2

) =︸︷︷︸
Def. 3.6

= mb0
1 (ei) =︸︷︷︸

Prop. 3.2

δb0(ei) .

(6.112)

That is the �rst and second equation of (6.90) is proven. Remark that if we take

δb0 with b0 =
n∑
i=1

x0iei for x0i arising of y0i = ex0i for y0 satisfying

∂POp0

∂yi
|y=y0 ≡ 0 (6.113)

as in (6.96) we get that δb0(ei) = 0.
For such a pair p0, b0, giving rise to a disappearance of

δb0 : H1(L(p); Λ0)→ H0(L(p); Λ0) , (6.114)

let us think about how

δb0 : H i(L(p0); Λ0)→ H i−1(L(p0); Λ0)
x 7→ · · ·

(6.115)

can be computed.
Following the ideas of [FOOO1] we prove via induction (the base case is already
done above) over (deg x, µ(β)) that all coboundary operations vanish then. Since
a basis of H i(L(p0); Λ0) arises by cupping appropriate elements ei of the basis
{e1, ..., en} of H1(L(p0); Λ0) we can write

x = x1 ∪ x2 =︸︷︷︸
(5.189)

m2,β0(x1,x2) (6.116)

with deg x1,2 < deg x = i. Thus (6.115) writes as

δb0(x) =
∑
β

mb0
1,β(m2,β0(x1,x2))︸ ︷︷ ︸

∈ Hi+n−(n+µ(β)+2−3)(···)=H(i+1)−µ(β)(···)

T
ω(β)
2π . (6.117)
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Remark that by degree reasons we only sum over classes β with (even) Maslov
indices µ(β) ≤ i+ 1. Continuing with the inductive step we get

mb0
1,β(m2,β0(x1,x2)) =︸︷︷︸

A∞-rel.
(5.112)

∑
β1+β2=β

(−1)···m2,β2(mb0
1,β1

(x1),x2)+

+
∑

β1+β2=β

(−1)···m2,β2(x1,m
b0
1,β1

(x2))+

+
∑

β1+β2=β
β2 6=0

(−1)···mb0
1,β1

(m2,β2(x1,x2)) = 0 .

(6.118)

Here all three summands vanish since for the �rst and the second we have

deg x1,2 < deg x (6.119)

and for the third

µ(β1) < µ(β1) + µ(β2)︸ ︷︷ ︸
<0

= µ(β) (6.120)

holds. For the fact β2 6= 0 implying 0 < µ(β2) recall Proposition 5.3 (i).
Summarizing the achieved results we conclude that for the pair

p0 ∈ ∆̊, b0 ∈ H1(L(p0); Λ+) (6.121)

(L(p0) being the balanced �ber, b0 arising as a critical point of POp0) the assertion
about balanced �bers (and thus HF ∗(· · ·) ∼= H∗(Tn; Λ0)) and (6.90) (in the special
case that all derivatives vanish) is proven.

Unfortunately the presented consideration mostly provides just one �ber for
which the Lagrangian Floer Cohomology can be computed.
The result can be improved for the n = 2 case, that is examining 2 dimensional
torus �bers in 4 dimensional toric manifolds. Precisely speaking it only remains
to prove the third equation of (6.90). Analogously to above this can be done as
follows

δb0(e1 ∪ e2︸ ︷︷ ︸
= e12

) =
∑
β

mb0
1,β(m2,β0(e1, e2))T

ω(β)
2π ∈ H3−µ(β)(L(p); Λ0) . (6.122)

Again using the degree argument and (5.189) we conclude that only curves of class
β with µ(β) = 2 have to be taken into account. Hence by using the A∞-algebra
relation (6.122) writes as

δb0(e12) =
∑
β

(
∑

β1+β2=β

(−1)···m2,β2(mb0
1,β1

(e1), e2)T
ω(β1)+ω(β2)

2π +

+
∑

β1+β2=β

(−1)···m2,β2(e1,m
b0
1,β1

(e2))T
ω(β1)+ω(β2)

2π +

+
∑

β1+β2=β
β2 6=0

(−1)···mb0
1,β1

(m2,β2(e1, e2))T
ω(β1)+ω(β2)

2π ) .

(6.123)
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For the �rst and the second summand we can use (6.112) and the fact that e0 =
PD([L(p)]) is an A∞-algebra unit (see De�nition 3.5 (d)). We conclude

δb0(e12) =
∂POp0

∂x1
|b=b0 ·m2(e0, e2)+

+
∂POp0

∂x2
|b=b0 ·m2(e1, e0)+

+
∑
β2
β2 6=0

(−1)···d(m2,β2(e1, e2))T
ω(β2)

2π =

=︸︷︷︸
deg e1=1

∂POp0

∂x1
|b=b0 · e2 −

∂POp0

∂x2
|b=b0 · e1

(6.124)

which forms the end of the proof.

Remark 6.4. Tying up with the unsolved di�culty raised in Remark 6.3 we high-
light that the method above of calculating the Lagrangian Floer Cohomology for a
continuum of Lagrangian torus �bers (not just a balanced one) can not easily be
carried on for n ≥ 3 cases. Already for n = 3 we have

δb0(e1 ∪ e2 ∪ e3︸ ︷︷ ︸
= e123

) =
∑
β

mb0
1,β(m2,β0(e1, e2 ∪ e3))T

ω(β)
2π ∈ H4−µ(β)(L(p); Λ0)

(6.125)

that is additionally classes β with µ(β) = 4 have to be taken into account. This
yields

δb0(e123) =
∑
β

µ(β)=2

mb0
1,β(m2,β0(e1, e2 ∪ e3))T

ω(β)
2π

︸ ︷︷ ︸
(I)

+
∑
β

µ(β)=4

mb0
1,β(m2,β0(e1, e2 ∪ e3))T

ω(β)
2π

︸ ︷︷ ︸
(II)

.

(6.126)
For (I) we proceed as above by using the A∞-relation and (5.189) which yields

(I) =
∑
β

(
∑

β1+β2=β

(−1)···m2,β2(mb0
1,β1

(e1), e2 ∪ e3)T
ω(β1)+ω(β2)

2π +

+
∑

β1+β2=β

(−1)···m2,β2(e1,m
b0
1,β1

(e2) ∪ e3)T
ω(β1)+ω(β2)

2π +

+
∑

β1+β2=β
β2 6=0

(−1)···mb0
1,β1

(m2,β2(e1, e2 ∪ e3))T
ω(β1)+ω(β2)

2π ) =

=
∂POp0

∂x1

|b=b0 · e2 ∪ e3 −
∂POp0

∂x2

|b=b0 · e1 ∪ e3 +
∂POp0

∂x3

|b=b0 · e1 ∪ e2 .

(6.127)

Analogously we get for classes β of Maslov index µ(β) = 4 (remark that for clarity's
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sake we always neglect the appearing T
ω(·)
2π terms)

(II) = · ·· = ∂POp0

∂x1

|b=b0 ·
∑
β2

µ(β2)=2

m2,β2(e0, e2 ∪ e3) +
∑
β1

µ(β1)=4

mb0
1,β1

(e1)︸ ︷︷ ︸
= 0

∪e2 ∪ e3+

+
∑
β2

µ(β2)=2

(
∂POp0

∂x2

|b=b0 ·m2,β2(e1, e3)− ∂POp0

∂x3

|b=b0 ·m2,β2(e1, e2)

)
+

+
∑
β1

µ(β1)=4

e1 ∪mb0
1,β1

(e2 ∪ e3)︸ ︷︷ ︸
= 0

+

+
∑
β

∑
β1+β2=β
µ(βi)=2

mb0
1,β1

(m2,β2(e1, e2 ∪ e3)) .

(6.128)

So for computing these so called "extra terms" we have to make sense of terms of
the form

m2,β(ei, ej) and mb0
1,β1

(m2,β2(ei, ej ∪ ek)) . (6.129)

We believe that this can be done quite similar to how we computed

ml,β(x, ..., x) for x ∈ H1(L(p); ΛR
0 ) (6.130)

in the proof of Proposition 5.5 but unfortunately could not prove it yet.
When examining tori of dimension n ∈ {4, 5, 6, ...} things even get less transparent
since now, by degree reasons, curves of Maslov index µ(β) ∈ {5, 6, 7} ∩ 2Z have to
be considered.

6.2.2 Examples: (Non-)displacement results
for Lagrangian tori in S2

r1
× S2

r2
and CP 2

The last section's aim was to present a method of how one can compute

HF ((L(p), b), (L(p), b); Λ0) (6.131)

at least for some Lagrangian tori L(p) in M . Remark that it does not matter if
we see L(p) as one Lagrangian, and describe the setup via an A∞-algebra, or if we
regard it as a pair L1 = L2 = L(p), and use the concepts of A∞-bimodules. As
highlighted in (6.79) the thereof arising Lagrangian Floer Cohomologies are identi-
cal.
Here we explicitly discuss the presented concepts for M4 being either S2

r1
× S2

r2
or

CP 2, which are both Fano toric. Thanks to (6.90) this setup even provides a con-
tinuum of 2 dimensional tori for which HF (· · ·) is computable.
Then we are �nally in the position to answer question (1.3), posed in the introduc-
tory chapter 1, namely to derive a lower bound for the number of intersection points
of L(p) and ψ(L(p)) for ψ being a Hamiltonian di�eomorphism.
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As usually for smooth maps H : [0, 1] ×M → R we have φtH(·) as the solution of
ẋ(t) = XH(t, x(t)) for XH being the Hamiltonian vector �eld of H.
In order to �nd such a lower bound estimate we rely on Theorem J of [FOOO1],
that we want to state here without proving it:

Theorem 6.2

Let L be a relatively spin Lagrangian submanifold inM and ψ be a Hamiltonian
di�eomorphism with Hofer norm

µ = ‖ψ‖ = inf
H;

φ1
H=ψ

1∫
0

(max H(t, ·)−min H(t, ·))dt (6.132)

such that ψ(L) is transversal to L. For b ∈ Mweak(L) and a Lagrangian Floer
cohomology of the form

HF ((L(p), b), (L(p), b); Λ0) ∼= (Λ0)m ⊕
n⊕
i=1

Λ0

T λiΛ0

(6.133)

we have
#{p ∈ ψ(L) ∩ L} ≥ m+ 2n(µ) (6.134)

for
n(µ) = #{i|λi ≥ µ} . (6.135)

(a) (Non-)displaceability of Lagrangian 2−tori in S2
r1
× S2

r2
:

Without loss of generality we assume r1 ≤ r2 in the following. Recall section
5.1 where we derived the moment polytope for this toric symplectic manifold. By
(5.19) we know that it is of the form

∆2,4
λ1,2=0,λ3=−2r1,λ4=−2r2

= {p ∈ R2 | 〈p, ei〉 ≥ 0; 〈p,−e1〉 ≥ −2r1; 〈p,−e2〉 ≥ −2r2}
= {p ∈ R2 | l1,2(p) = p1,2 ≥ 0; l3(p) = 2r1 − p1 ≥ 0;

l4(p) = 2r2 − p2 ≥ 0}
(6.136)

with inward pointing normal vectors

v1 = e1, v2 = e2, v3 = −e1, v4 = −e2 . (6.137)

Due to Proposition 5.5 we know that the potential function thus writes as

POp : (Λ+)2 → Λ+

x 7→ ex1T p1 + ex2T p2 + e−x1T 2r1−p1 + e−x2T 2r2−p2 .
(6.138)
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Taking the derivatives with respect to x1, x2 at the point b0 = (0, 0) ∈ H1(L(p); Λ+)
yields

∂POp

∂x1

|b=b0 = T p1 − T 2r1−p1 = 0

∂POp

∂x2

|b=b0 = T p2 − T 2r2−p2 = (1− T 2r2−2p2︸ ︷︷ ︸
∈ Λ0

)T p2

(6.139)

for a continuum of Lagrangian torus �bers L(p) ∼= T 2 over {p ∈ ∆̊| p1 = r1, p2 < r2}.
To compute the Lagrangian Floer Cohomology we have to consider the sequence

0 −→ H2(L(p); Λ0)
δb0−→ H1(L(p); Λ0)

δb0−→ H0(L(p); Λ0) −→ 0 (6.140)

that can be written as, when applying the results of Proposition 6.1,

0 −→ Λ0 −→ (Λ0)2 −→ Λ0 −→ 0

e1 ∪ e2 7−→ (−1 + T 2r2−2p2)T p2e1

e1 7−→ 0

e2 7−→ (1− T 2r2−2p2)T p2e0 .

(6.141)

We conclude that the Lagrangian Floer cohomology is of the form

HF ∗((L(p), b0), (L(p), b0); Λ0) ∼=
(

Λ0

T p2Λ0

)⊕2

. (6.142)

Remark that, for applying the stated Theorem 6.2, in the de�nition of the �ltered
A∞-algebra (Theorem 5.3) we substituted

T → T
1

2π (6.143)

compared to K. Fukaya's De�nition in [FOOO1]. This simpli�es appearing terms
in a way such that one gets rid of the 2π factors when inserting ω(βi) = 2πli(p).
When now substituting back (6.142) reads as

HF ∗((L(p), b0), (L(p), b0); Λ0) ∼=
(

Λ0

T 2πp2Λ0

)⊕2

. (6.144)

With Theorem 6.2 we �nally conclude

#{q ∈ ψ(L(p)) ∩ L(p)} ≥ 4 = 2n=2 (6.145)

for Hamiltonian di�eomorphism

ψ : S2
r1
× S2

r2
→ S2

r1
× S2

r2
(6.146)

with Hofer norm
‖ψ‖ < 2πp2 (6.147)
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such that ψ(L(p)) intersects L(p) transversally.
Remark that this argumentation works analogously, and thus the number of inter-
section points is bigger or equal 4, for L(p) over {p ∈ ∆̊| p1 < r1, p2 = r2} and
‖ψ‖ < 2πp1.
To tie up with the considerations in Proposition 6.1 about critical points of PO we
remark that for b0 = 0 the only balanced �ber is given by

L0 := µ−1((r1, r2)) (6.148)

resulting in
∂POp

∂xi
|b=b0 = 0 for i ∈ {1, 2} (6.149)

implying
HF ∗((L0, b0), (L0, b0); Λ0) ∼= (Λ0)⊕2 . (6.150)

With Theorem 6.2 this means that L0 is indeed non-displaceable (or equivalently
the displacement energy is ∞), that is we always �nd intersection points no matter
how big the Hofer energy of the Hamiltonian di�eomorphisms ‖ψ‖ is.

(b) Visualizing T 1 = S1 in S2
r1
(example (a) for n = 1) :

Clearly this particular case is just a simpli�cation of the results achieved in
example (a) and yields nothing new. Nevertheless due to its transparency it well
illustrates the usefulness of Lagrangian Floer Cohomology combined with Theorem
6.2 to get an lower bound on the number of intersections points.
The corresponding moment polytope

∆1,2
λ1=0,λ2=−2r1

= {p ∈ R1 | 〈p, e1〉 ≥ 0; 〈p,−e1〉 ≥ −2r1}
= {p ∈ R2 | l1(p) = p1 ≥ 0; l2(p) = 2r1 − p1 ≥ 0}

(6.151)

yields a potential function of the form

∂POp

∂x1

|b=b0 = T p1 − T 2r1−p1 = (1− T 2r1−2p1︸ ︷︷ ︸
∈ Λ0

)T p1 (6.152)

for b0 = 0 ∈ H1(L(p); Λ+) and �bers L(p) over {p ∈ ∆̊| p1 ≤ r1}.
Performing similar considerations as in the previous example we get

HF ∗((L(p), b0), (L(p), b0); Λ0) ∼=
{

Λ0

T 2πp1Λ0
, for p1 < r1

Λ0 , for p1 = r1
. (6.153)

Again with Theorem 6.2 we get for L(p1 < r1)

#{q ∈ ψ(L(p)) ∩ L(p)} ≥ 2 = 2n=1 (6.154)

for Hamiltonian di�eomorphism

ψ : S2
r1
→ S2

r1
(6.155)
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with Hofer norm
‖ψ‖ < 2πp1 (6.156)

such that ψ(L(p)) intersects L(p) transversally. Analogously L(r1) is the only non-
displaceable �bre for b0 = 0.
Pictorially we can visualize the setup as in �gure (6.2) where the balanced La-
grangian tori L0 = S1

equ. = L(r1) is drawn in blue. The picture well illustrates the

Figure 6.2: Intersections of Lagrangian tori L(p1) in S2
r1

results previously achieved by using abstract Lagrangian Floer Cohomology. We
easily see that if we move the Lagrangian L(p1), by using a Hamiltonian di�eomor-
phism with Hofer norm ‖ψ‖ > 2πp1 (that is bigger than the volume volL(p1) = 2πp1

of the upper cap determined by its boundary L(p1)), the dashed area between

ψ(L(p1)) and L(p1) (6.157)

vanishes. This implies
ψ(L(p1)) ∩ L(p1) = ∅ . (6.158)

Otherwise (‖ψ‖ < 2πp1) we always have 2n=1 intersection points x, y.
For L0 (being the equator) we do not have such a restriction onto the Hofer norm,
since for ψ with ‖ψ‖ = 2πr1 we have ψ(L0) = L0, implying that L0 is a non-
displaceable Lagrangian tori in S2

r1
.

(c) (Non-)displaceability of Lagrangian 2−tori in CP 2 :

Similar to the way how we treated the toric manifold T 2 ↪→ S2
r1
× S2

r2
, we can

handle the case for CP 2.
Recall (5.31), namely its moment polytope is given by

∆2,3
λ1=0,λ2=0,λ3=−1 = {p ∈ R2 | 〈p, e1〉, 〈p, e2〉 ≥ 0; 〈p,−e1 − e2〉 ≥ −1} =

= {p ∈ R2 | l1,2(p) = p1,2 ≥ 0; l3(p) = 1− p1 − p2 ≥ 0}
(6.159)
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with inward pointing normal vectors of the form

v1 = e1, v2 = e2, v3 = −e1 − e2 . (6.160)

Proposition 5.5 allows to write the potential function in the form

POp(x) = ex1T p1 + ex2T p2 + e−x1−x2T 1−p1−p2 . (6.161)

Then its derivatives with respect to x1, x2 (at b0 = (0, 0) ∈ H1(L(p); Λ+)) are given
by

∂POp

∂x1

|b=b0 = T p1 − T 1−p1−p2

∂POp

∂x2

|b=b0 = T p2 − T 1−p1−p2 .

(6.162)

When now considering Lagrangian torus �bers over

{p ∈ ∆̊| p1 = 1/3, p2 > 1/3} or {p ∈ ∆̊| p1 > 1/3, p2 = 1/3} (6.163)

we either get for the �rst case

∂POp

∂x1

|b=b0 = (

∈ Λ0︷ ︸︸ ︷
T p2−1/3 − 1) T 2/3−p2

∂POp

∂x2

|b=b0 = (T 2p2−2/3 − 1︸ ︷︷ ︸
∈ Λ0

) T 2/3−p2

(6.164)

or

∂POp

∂x1

|b=b0 = (

∈ Λ0︷ ︸︸ ︷
T 2p1−2/3 − 1) T 2/3−p1

∂POp

∂x2

|b=b0 = (T p1−1/3 − 1︸ ︷︷ ︸
∈ Λ0

) T 2/3−p1

(6.165)

for the second.
For computing the Lagrangian Floer Cohomology we consider the sequence

0 −→ Λ0 −→ (Λ0)2 −→ Λ0 −→ 0

e1 ∪ e2 7−→ T 2/3−pi((· · ·)e2 − (· · ·)e1)

e1 7−→ (· · ·) T 2/3−pie0

e2 7−→ (· · ·) T 2/3−pie0

(6.166)

that yields (recall the resubstitution T → T 2π)

HF ∗((L(p), b0), (L(p), b0); Λ0) ∼=
(

Λ0

T 2π(2/3−pi)Λ0

)⊕2

(6.167)
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for i = 2 in the �rst respectively i = 1 in the second case. Hence with Theorem 6.2
we get:

#{q ∈ ψ(L(p)) ∩ L(p)} ≥ 4 = 2n=2 (6.168)

for Hamiltonian di�eomorphism

ψ : CP 2 → CP 2 (6.169)

with Hofer norm
‖ψ‖ < 2π(2/3− pi) (6.170)

such that ψ(L(p)) intersects L(p) transversally. Here we mean

pi =

{
p1, for p ∈ {∆̊| p1 > 1/3, p2 = 1/3}
p2, for p ∈ {∆̊| p1 = 1/3, p2 > 1/3}

. (6.171)

For b0 remark that L0 := µ−1((1/3, 1/3)) is the only non-displaceable �ber. This
holds since in that case we have

∂POp

∂xi
|b=b0 = 0 (6.172)

which yields
HF ∗((L0, b0), (L0, b0); Λ0) ∼= (Λ0)⊕2 (6.173)

and thus, with Theorem 6.2, we conclude

ψ(L) ∩ L 6= ∅ (6.174)

for all Hamiltonian di�eomorphisms ψ : CP 2 → CP 2.

6.2.3 Conclusion and suggestions for further studies

In summary it remains to say that presented theories and thereof arising methods
provide an insight into the behavior of at least some (in the 2 dimensional case
even for a continuum of) Lagrangian subtori L ⊂ M when applying Hamiltonian
di�eomorphisms ψ on Fano toric symplectic manifolds M .
Though we are not able to examine all Lagrangian subtori in S2

r1
×S2

r2
, the presented

method of K. Fukaya et al. improves a result of Y.V. Chekanov achieved in [Che].
The authors� work extends the allowed bound on the Hofer norm for ψ from

‖ψ‖ < 2πr1 to ‖ψ‖ < 2πp2 (6.175)

with r1 < p2 ≤ r2 (recall that we required wlog. r1 ≤ r2).
One goal for the future, as already announced in Remark 6.4, could be to further
extend the achieved result (of Proposition 6.1) to a continuum of Lagrangian sub-
manifolds of dimension n = 3, 4, ... .

A di�erent (but mainly also pioneered by K. Fukaya in [Fu]) technique for the
examination of Lagrangian submanifolds, by using holomorphic curve theory, is the
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incorporation of string topology. A �rst step towards that kind of treatment (of
symplectic �eld theory) is discussed by K. Cieliebak and J. Latschev in [CL] for the
case of cotangent bundles. In contrast to how we derived the A∞ description by
evaluating marked points of Σ, this new approach uses the evaluation of the whole
boundary ∂Σ and one thus deals with the free loop space of L. Here the appearing
bubbling phenomena can be described and maybe well handled by string topology
operations on L. It seems extremely interesting to explore the relation between the
two possible ways of approaching, namely A∞-structures (the content of this thesis)
and string topology (the content of future research).
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Chapter 7

Applications II:

Properties of Ψ -

Relation to physics

We are tying in with the considerations of section 6.2 about possible applications of
the potential function PO for mathematics, namely to use its derivatives to com-
pute the coboundary operator, de�ning the Lagrangian Floer Cohomology. Here in
contrast we directly pick up the considerations of the introductory chapter outlin-
ing the importance of A∞-structures in string �eld theory. Precisely speaking we
aim to provide a �rst feeling for the relevance of A∞-algebra structures in order to
describe tree-level scattering amplitudes of open string states. As we show in the
upcoming sections the space of physical states can naturally be equipped with an
A∞-algebra structure. This algebraic description again leads to the de�nition of a
potential function (the superpotential Ψ) out of the given A∞-algebra structure. As
in the case for toric symplectic manifolds we are interested in its derivatives and in
particular critical points. As we see these are the states de�ning the string moduli
space (the vacua of the underlying cubic string �eld theory) respectively are strict
bounding cochains (recall De�nition 3.7) when regarding things from a mathemat-
ical perspective.
We refer to [Laz], [Tom] that provided us a helpful approach to the way how physi-
cists regard and work with A∞-structures. These sources can in addition be seen
as the main references we refer to in this chapter. For the appearing mathematics
we again make use of K. Fukaya et al.s� ideas presented in [FOOO1].

7.1 Basics of D-brane geometry

(A side)

In this �rst section concepts are introduced in general D-brane fashion �rst. Since
it is more related to the way how things are described in the preceding chapters, we
outline their concrete A side realizations in brackets.

129
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For the way how concepts appear in B side considerations, we refer to the literature
especially [Laz].

As remarked in the introductory chapter A∞-algebras generalize the concept of
di�erential graded algebras (D.G.A.). Assume a given D.G.A.

(A =
⊕
m∈Z

Am, ·, Q) (7.1)

over a �eld R. Speaking in physical terms the Z-graded vector space A de�nes
the Hilbert space of (o�-shell) string states of a string theory with the grading | · |
denoting the worldsheet degree.
On theA side the physical target space consists of a Calabi-Yau threefold (M,ω, J,Ω).
The notion of an A-type brane means a pair (L,E), where L ⊂ M is a special
(Ω|L = const.) Lagrangian submanifold and E denoting a complex vector bundle
over L. In this setup the Z-graded complex vector space A is then given by

A := Ω∗(L,End(E)) . (7.2)

This viewpoint gets applied when considering only one single given A-brane. It
generalizes from a D.G.A. to a categorical description, and thus from A∞-algebras
to A∞-categories, when considering many A-branes at once. Here the branes Li
form the objects of this so called Fukaya category and morphisms Hom(Li, Lj) are
given by the Hilbert space of open strings stretching between the branes (realized
by Lagrangian Floer Cohomology HF (Li, Lj) on the A side). Here the categorical
description comes into play since multiplication respectively A∞ homomorphisms
are only de�ned if source and target brane coincide that is

mn : Hom(L1, L2)⊗ Hom(L2, L3)⊗ ...⊗ Hom(Ln, Ln+1)→ Hom(L1, Ln+1) . (7.3)

We do not want to further develop this more general kind of description and refer
the reader to [LazII] and [Tom] for details.

For the D.G.A. (7.1) the di�erential Q (the Dolbeault coboundary operator

∂End(E) : Ωp,q(L,End(E))→ Ωp,q+1(L,End(E)) (7.4)

on the A side) symbolizes the BRST coboundary operator and with · (realized by
the ordinary wedge product ∧) the string product is denoted.
A cubic open string �eld theory is characterized by an action functional of the form

S : Am=1 → R

φ 7→ 1

2
〈φ,Qφ〉+

1

3
〈φ, φ · φ〉

(7.5)

de�ned on the space of string �elds that is formed by homogeneous degree 1 elements
A1 ⊂ A. Here the bracket 〈·, ·〉 denotes a non-degenerate bilinear pairing

〈·, ·〉 : A×A → R (7.6)

satisfying
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(i) 〈u · v, w〉 = 〈u, v · w〉

(ii) 〈Qu, v〉 = (−1)|u|+1〈u,Qv〉

(iii) 〈u, v〉 = (−1)|u||v|〈v, u〉

(iv) 〈u, v〉 = 0 if |u|+ |v| 6= 3

for u, v, w ∈ A. Item (iv) re�ects the fact that we are dealing with a target space
M being a CY threefold. The Lagrangian submanifolds are thus of real dimension
3. For A-type branes the bracket 〈·, ·〉 is de�ned by wedging the forms u, v and then
integrating its trace along L, that is

〈u, v〉 :=

∫
L

trE(u ∧ v) . (7.7)

To guarantee de�nedness of this pairing one needs to require |u|+ |v| = 3. Remark
that Q is of degree +1, string �elds ψ ∈ A1 and thus both summands in (7.5)
ful�ll this requirement. Further (iv) simpli�es (iii) from a graded symmetry to a
symmetry condition

〈u, v〉 = 〈v, u〉 . (7.8)

Trivially properties (i)-(iii) are also ful�lled when setting 〈·, ·〉 as in (7.7).
In that sense we further use an antilinear operator

c : Ak → A3−k (7.9)

on A satisfying
〈cu, v〉 = 〈cv, u〉 (7.10)

and c2 = Id. This in turn allows to de�ne a Hermitian (due to (7.10)) product

h : A×A → R

(u, v) 7→ 〈cu, v〉 .
(7.11)

Due to |cu|+ |v| = 3 (iv) combined with |cu|+ |u| = 3 (7.9) we have

h(u, v) = 0 if |u| 6= |v| . (7.12)

Further
h(cu, cv) = 〈c2u, cv〉 = 〈cv, u〉 = h(v, u) = h(u, v) (7.13)

yields that the operator c is an antilinear isometry.
As maybe already expected for the A side the operator c is just the ordinary Hodge
star operator ∗End(E).

The degree −1 operator Q+ is de�ned by

Q+ := (−1)|·|cQc (

A side︷︸︸︷
≡ ∂

∗
End(E) = − ∗End(E) ◦ ∂End(E) ◦ ∗End(E)) . (7.14)
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Here Q+ denotes the Hermitian conjugate of Q with respect to h since

h(Q+u, v) = (−1)|u|h(cQcu, v) = (−1)|u|〈Qcu, v〉 = (−1)|u|+|cu|+1〈cu,Qv〉 =

= (−1)4〈cu,Qv〉 = h(u,Qv) .
(7.15)

Out of the de�nition of Q+ we easily deduce

(i) (Q+)2 = (−1)|·|Q+(cQc) = (−1)2|·|cQccQc = cQ2c = 0

(ii) (Q+)+ = (−1)|·|cQ+c = (−1)2|·|ccQcc = Q .

After introducing the needed mathematical operations we aim to describe the
relevance of these notions when doing physics.
Remark that the physical laws of the theory are encoded in (7.5). It is invariant
under certain gauge transformations and for the following we �x this symmetry by
requiring

Q+φ = 0 . (7.16)

As in the literature the thereof arising vector space

ker Q ∩ ker Q+ =: K (7.17)

is used as the Hilbert space of physical states . Mathematically speaking of the A
side this space K is formed by harmonic forms

Ω∗harm.(L,End(E)) := {v ∈ Ω∗(L,End(E))|∆End(E)v =

=(∂
∗
End(E)∂End(E) + ∂End(E)∂

∗
End(E))v = 0} .

(7.18)

Using Hodge decomposition we continue by orthogonally decomposing (with respect
to h) the space of o�-shell states

A = K ⊕ Im Q⊕ Im Q+︸ ︷︷ ︸
K⊥

(7.19)

with
ker Q = K ⊕ Im Q and ker Q+ = K ⊕ Im Q+ (7.20)

where the elements of Im Q and Im Q+ are called spurious- and unphysical states
respectively. Remark that we therefore get

K ∼= H∗Q(A) =
ker Q

im Q
. (7.21)

With de�nition (7.17) we are thus consistent with the literature (e.g. [Tom]) since
in BRST quantization H∗Q(A) is conveniently used as the Hilbert space of (on-shell)
physical states.
To de�ne orthogonal projectors recall that Q2 = Q+2 = 0 and that the decomposi-
tion above yields that the restrictions

Q|Im Q+ : Im Q+ ∼=−→ Im Q

Q+|Im Q
: Im Q

∼=−→ Im Q+
(7.22)
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de�ne isomorphisms between Im Q and Im Q+. So the graded commutator H (on
the A side given by the Laplace operator ∆End(E))

[Q,Q+] = QQ+ + (−1)|Q||Q
+|+1Q+Q = QQ+ +Q+Q =: H (7.23)

de�nes an automorphism onK⊥ whose inverse shall be denoted by H−1. This allows
to de�ne

πQ := QH−1Q+

πQ+ := Q+H−1Q
(7.24)

as orthogonal projectors onto the space of spurious respectively unphysical states.
With

P := 1− (πQ + πQ+) (7.25)

we denote the orthogonal projector onto the space of physical states. In this setup
a propagator is required to project out all states except the spurious ones, precisely
speaking it shall that shall propagate spurious into unphysical states. Here such a
propagator may be written as

U = −H−1Q+ (7.26)

that allows to rewrite

πQ = −QU and πQ+ = −UQ . (7.27)

7.2 A∞-algebras and the vacua of cubic string �eld

theory

Not only for working physicists, but also for mathematicians, these stated concepts
may somehow be familiar in particular with regard to the usage of A∞-algebras.
This connection can be derived when using U to rewrite (7.25) as follows

P − 1 = QU + UQ , (7.28)

that can be seen as the de�ning equation for

(K,QK)
ι // (A, QA, ·)
P

oo

to be a homotopy retract. In that particular case this means the following:

• (A, QA, ·) is a D.G.A. with di�erential QA ≡ Q and associative multiplication
given by the string product ·. To remain consistent with the literature we
denote mA(u, v) := u · v.

• (K =
⊕
m∈Z

(K ∩Am), QK) is a cochain complex where K ⊂ A as above denotes

the space of physical states. Remark that QK ≡ Q yielding Q|K ≡ 0 per
de�nition of K.
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• P : A → K is the previously de�ned projector onto the space of physical
states K. The map ι denotes the inclusion K ↪→ A and thus in particular is
a chain map. We further need ι to be a quasi-isomorphism, that is it induces
an isomorphism on cohomological level. This is true since

H∗QK (K) =
ker QK

im QK

QK |K=0︷︸︸︷
= K

(7.21)︷︸︸︷∼= H∗QA(A) =
ker QA
im QA

. (7.29)

• U (the propagator) is a degree −1 operator on A.

• The identity ι ◦ P − 1 = QAU + UQA holds.

Due to the work of J. Stashe� in [Sta] and thanks to S. Ma'u, who nicely explained
this construction to us at the SFT V workshop 2011 in Hamburg, for such a setup
the space of physical states can be equipped with an un�ltered A∞-algebra structure

(K, {mn}n≥1) (7.30)

over R.
We shortly recap this construction amongst others by making use of the description
of the A∞-structures by using planar trees. Recall section 3.1.1 where un�ltered
A∞-algebra structures were introduced by equipping a graded vector space K (here
we even do not have to be that general to use modules) over R with degree 2 − n
homomorphisms

mn : K⊗n → K (7.31)

satisfying ∑
p+q+r=n

± mp+1+r(id
⊗p ⊗mq ⊗ id⊗r) = 0 for all n ≥ 1 . (7.32)

Remark that there exist di�erent conventions in the literature concerning the degree
of mn. In contrast to section 3.1.1, we use 2− n (cohomology convention since deg
m1=1) here, instead of +1, for the degree of mn. Further we simplify things since
we do not worry about sign issues that is, as in e.g. (7.32) we write ± instead of
(−1)p+q·r.
To switch to the description by using planar trees, mn is graphically illustrated as

and thus (7.32) may be visualized by
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In order to further simplify writings, we de�ne

∂mn := ± mn(m1 ⊗ id⊗ · · · ⊗ id)± mn(id⊗ · · · ⊗ id⊗m1)± m1 ◦mn , (7.33)

that allows to rewrite (7.32) for particular n as follows

n = 1 :

m1 ◦m1 = 0 (m1 is a di�erential)

⇐⇒
∂m1 = 0

n = 2 :

m2(m1, id) +m2(id,m1)−m1 ◦m2 = 0

(Leibniz rule for product m2)

⇐⇒
∂m2 = 0

n = 3 :

m2(id,m2)−m2(m2, id) =

m3(m1, id, id) +m3(id,m1, id) +m3(id, id,m1) +m1 ◦m3

(Deviation of m2 of not being associative)

⇐⇒
∂m3 = m2(id,m2)−m2(m2, id)

n = m:
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With that knowledge in mind we are prepared to write down the homomorphisms
mn for the A∞-algebra (K, {mn}n≥1):
For mn=1 we simply take the already given di�erential QK

m1 = QK . (7.34)

A product m2 on K shall be de�ned as

m2 : K⊗2 → K

(u, v) 7→ P (mA(ι(u), ι(v)))
(7.35)

visualized by:

To derive an expression for m3 we examine how the de�ned homomorphism m2

deviates from being an associative multiplication:

m2(id,m2)−m2(m2, id) = (7.36)
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In that fashion we recursively de�ne

and it can be shown that in such a case (K, {mn}n≥1) carries the structure of an
un�ltered A∞-algebra, called the minimal model in physicists language.
So where does the physics lie behind these planar trees and the present A∞ descrip-
tion? In fact physicists interpret the maps

mn : K⊗n → K (7.37)

as string products of physical states u1, ..., un ∈ K, obeying the tree-level Feynman
rules of the cubic open string �eld theory. For physicists the described planar tree
picture thus displays the visualization of scattering processes by using Feynman
diagrams. In that sense tree-level scattering amplitudes are de�ned as

〈〈u1, ..., un〉〉(n) := 〈u1,mn−1(u2, ..., un)〉 (7.38)

When knowing 〈〈· · ·〉〉(n), one de�nes a tree-level potential Ψ (also known as the
superpotential) on the space of physical states of worldsheet degree oneK1 = K∩A1.
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This superpotential assigns ψ ∈ K1 to the sum of all signed amplitudes of ψ for at
least three leg processes, that is

Ψ : K1 → R

ψ 7→
∑
n≥3

1

n
(−1)

n(n−1)
2 〈〈ψ, ..., ψ〉〉(n) ≡︸︷︷︸

(7.38)

≡
∑
n≥3

1

n
(−1)

n(n−1)
2 〈ψ,mn−1(ψ, ..., ψ)〉 =

=
∑
n≥2

1

n+ 1
(−1)

n(n+1)
2 〈ψ,mn(ψ⊗n)〉 .

(7.39)

Meaning of Ψ for physicists:

In the standard cubic formulation of string �eld theory the relevant moduli space
of vacuaM is formed by solutions of the string �eld equations of motion

M := {φ0 ∈ A1| Qφ0 +
1

2
[φ0, φ0] = 0} (7.40)

modulo certain gauge transformation. As nicely described in [Laz] this solution
space can analogously be described when working with the data of the minimal
model (which in contrast needs the gauge �xing Q+φ = 0)

(K, {mn}n≥1) . (7.41)

Precisely speaking the author describes that the moduli space of solutions of the
homotopy Maurer-Cartan equation

MΨ := {φ0 ∈ K1| ∂Ψ

∂φ
|φ=φ0 = 0} (7.42)

andM are locally isomorphic (meaning explained below)

M
loc.∼= MΨ . (7.43)

This simpli�es work in a way such that physicists, when facing concrete problems,
are free to choose which approaches can be followed, either solving the equations
of motion or searching critical points of Ψ, in order to describe the moduli space of
vacua of cubic string �eld theory.

It remains to illustrate how to interpret the local isomorphism in (7.43).
As described above we construct the A∞-algebra (K, {mn}n≥1) out of the given
D.G.A. (A, ·, Q). Recall (1.21), namely (A, ·, Q) can in turn be considered as an
A∞-algebra

(A, {m′n}n≥1) (7.44)

with m′n = 0 for n ≥ 3. C. I. Lazaroiu showed that one can �nd an (un�ltered)
A∞-homomorphism

f = {fn}n≥1 : (K, {mn}n≥1)→ (A, {m′n}n≥1) (7.45)
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that in particular de�nes a weak homotopy equivalence (see Remark 3.1 (ii)) be-
tween them. Here f is de�ned as

for n ≥ 2 that is quite similar tomn as de�ned previously, however with the projector
P replaced by the propagator U at the outgoing edge. For n = 1 it is de�ned by

f1 = ι : K → A (7.46)

that clari�es that f is indeed a weak homotopy equivalence (meaning that f1 is a
quasi-isomorphism) since ι serves as a isomorphism between

K ∼= H∗m′1=Q(A) ≡ ker m′1
im m′1

(7.47)

as already described in (7.29).
Following this line of argumentation we get that (K, {mn}n≥1) and (A, {m′n}n≥1)
are even quasi-isomorphic as L∞-algebras (K, {ln}n≥1) and (A, {l′n}n≥1). Here we
will not discuss the theory of L∞-algebras, which naturally arise as symmetrization

m(′)
n → l(

′)
n (7.48)

of A∞-algebras, and refer the reader to Appendix A3 of [FOOO1] for details.
With this knowledge in mind we can use a Theorem of M. Kontsevich (section 4.4. of
[Ko]) providing that the deformation functors, associating the corresponding mod-
uli spacesM andMΨ to (A, {l′n}n≥1) and (K, {ln}n≥1) respectively, are equivalent
and thus denoting the local isomorphism as in (7.43).

Meaning of Ψ for mathematicians:

We come full circle by demonstrating that Ψ can additionally be helpful for
mathematicians. Again we are interested in its critical points but now with regard
to the detection of strict Maurer-Cartan solutions (see De�nition 3.7). We follow
the ideas of section 3.6.4. in [FOOO1].
Again we are working in the setup of L ⊂M being a special Lagrangian submanifold
inside a Calabi-Yau threefold M . Assume it is equipped with a �ltered A∞-algebra
structure

(CL,m = {mk}k≥0) (7.49)
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where CL := H∗(L; Q)⊗ Λ0,nov.
In order to de�ne a potential function (of the form of the superpotential (7.39))
whose critical points are in one-to-one correspondence with strict Maurer-Cartan
solutions we need to make use of two yet unproven conjectures.

(i) A pairing
〈·, ·〉 : CL ⊗ CL → Λ0,nov (7.50)

is de�ned that satis�es

〈ρ0,mk(ρ1, ..., ρk)〉 = (−1)(deg ρk+1)·(deg ρ0+...+deg ρk−1+k)〈ρk,mk(ρ0, ..., ρk−1)〉 .
(7.51)

(ii) We can choose the homomorphismsmk such that d̂(eb) is de�ned for all b ∈ C1
L,

that is the positive energy requirement b ≡ 0 mod Λ+
0,nov is redundant.

For a chosen basis e1, ..., en of H
1(L; Q) and elements of the form b =

n∑
i=1

xiei ∈ C1
L,

conjecture (ii) allows to de�ne a potential

Ψ : Λ0,nov × ...× Λ0,nov︸ ︷︷ ︸
n

→ Λ0,nov

(x1, ..., xn) 7→
∑
k

1

k + 1
〈b,mk(b, ..., b)〉 .

(7.52)

Again asking about its critical points we get

∂

∂xj
Ψ(x1, ..., xn) =

∑
k

1

k + 1
〈ej,mk(b, ..., b)〉+

∑
k

1

k + 1
〈b,mk(ej, ..., b)〉+ · · ·

· · ·+
∑
k

1

k + 1
〈b,mk(b, ..., ej)〉

(i)︷︸︸︷
=

=
∑
k

1

k + 1
〈ej,mk(b, ..., b)〉+ · · ·

· · ·+(−1)

= 2 = (deg b+1)︷ ︸︸ ︷
(deg ej + 1)(···)

∑
k

1

k + 1
〈ej,mk(b, ..., b)〉 =

=
∑
k

〈ej,mk(b, ..., b)〉 = 〈ej,m(eb)〉

(7.53)

and thus for b0 =
n∑
i=1

x0,iei we conclude

∇Ψ|
x0=(x0,1,...,x0,n) = 0 ⇔ d̂(eb0) =︸︷︷︸

(3.102)

eb0m(eb0)eb0 = 0
(7.54)

which �nishes the observation that critical points of Ψ can be used as strict Maurer-
Cartan solutions and vice versa.
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